Sunday, November 29, 2015

polik 将整体不变量用某些局部性质的积分表示"。 古典微积分中导数是函数的变化除以自变量的变化,推广到纤维丛就是截面的变化(平行移动)对底流形参数的变化,这就是联络(一般有多个分量)。直感上可以猜到,纤维丛的联络由底流形和纤维二者共同决定。

将整体不变量用某些局部性质的积分表示"。

古典微积分中导数是函数的变化除以自变量的变化,推广到纤维丛就是截面的变化(平行移动)对底流形参数的变化,这就是联络(一般有多个分量)。直感上可以猜到,纤维丛的联络由底流形和纤维二者共同决定。

阁下有一个天生的纤维丛。脑袋表面是底空间,上面长的头发就是纤维,转换函数依赖于阁下梳头的风格,结构群为平庸(不是吗?)。梳梳头,你得到纤维丛一个不同的截面。
前已述,群本身也是一个空间,因而我们可以将结构群的群空间就当作纤维空间,这种特殊的纤维丛叫主丛。既然主丛的纤维与结构群同一,只需标出底空间和结构群即可,故主丛记为P(M,G)。一个抽象群的元素都可以通过一些具体动作(操作)表现出来,叫群表示。李群,平移群,点群,等等天上神仙客都可以来个投胎下凡,即具体化。具体化就是选定群元素作用的场所,即表示空间。神迹在地球上表现。地球就是神的表示空间。看官可以看到,"表示空间"是多么地误导。当初要是叫表演空间多好。既然表演空间也是空间,我们假如将此表演空间当作纤维,也可以构成纤维丛,叫主丛诱导的伴侣丛,简称伴丛,记为PxVg,x指直乘,Vg是结构群G的表演空间,他是一个向量空间,故伴丛也叫伴向量丛。

下面是插曲,看官尽管可以略过。

令人惊心动魄的是这些看似灵界仙境才有的东西刚好是我们描述自然界的最可靠工具。现在物理学家认同所有的相互作用都是规范场刻画,而规范场在数学上与纤维丛完全是一回事。吴大俊和杨振宁证明规范势是c(主丛)上的联络,而规范场强是纤维丛(主丛底空间)的曲率。朗朗乾坤其实只是纤维丛世界之投影,像在我们世界扮演重要角色的电子似乎生活在三维空间,但实际上他的波函数是生活在以三维空间为底的纤维丛中。量子粒子由波函数描述,通常包含内部自由度。内部自由度对应的波函数可以当作纤维,底空间可以是普通的三维欧氏世界,也可以是(能量算子的)某个参数空间。因此,按纤维丛术语,体系的波函数就是丛截面。相位部分有动力学部分,几何部分和拓扑部分,其中后两种由和乐群描写。微观体系的很多"古怪"行为全因于此,例如成键机制,超导,量子霍尔效应等等。

No comments:

Post a Comment