https://lostabaddon.wordpress.com/2008/12/30/%E4%BB%80%E4%B9%88%E6%98%AF%E9%87%8D%E6%95%B4%E5%8C%96%EF%BC%9F/
相互作用过程中的所谓S矩阵(当然,如果再考虑我们需要的是振幅平方而非振幅的话,那还能对S矩阵做简化,得到所谓的“Cut图”),而这个S矩阵可以用关联函数(或者顶角函数,是去掉外线的关联函数)来表达,而关联函数(也所以顶角函数)则可以通过路径积分来求出——找出生成泛函(和前面说的那个泛函积分有关),然后对N点关联函数就取N个泛函微分。从而也就是说,一旦生成泛函知道了,那么你就可以知道关联函数与顶角函数,那么从而你也就知道的S矩阵——也即散射截面。而这个生成泛函则是作用量的泛函积分。因而在量子场论中,作用量决定一切。
晚上出去散步的时候在想这么一个很不着边际的问题:
我们想问题的时候,总是先有几个念头,然后大致想想,开始往其中几个念头上专注,然后会突然冒出别的想法,和这几个念头杂交一下,诞生新的一批想法,再挑几个专注思考。
这其实很想遗传算法等高级算法,挑出适应度高的,和别的杂交一下,不断演化。
所以,以遗传算法为例,想法就是具体的基因,从而在思考的时候,我们的知识水平以及在其下的对当前想法是否有助于解决一个问题的判断构成了这个想法的适应度函数,随后每次都会将一些显然没戏的给抛弃,将一些最后可能的着重考虑,将一些可能有戏的留着,说不定后来给忘了,也说不定以后会想起来继续思考。
而后,几个不同的想法之间往往也会有所碰撞,从而得到一些全新的想法,这个就不同基因之间的杂交,得到新的基因。
反复如上过程,直到只留下最后那个我们认为最可行的念头为止。
这是一个典型的遗传算法的过程。
当然,人脑执行起来还是会有一些不同的,比如某些想法会因为时间太久而被遗忘,这个在遗传算法中是不会出现的。
而且,人脑不可能同时对太多的念头进行处理,所以可以说适应度函数是很陡的,同时每一代基因的数量都很小。
这样的特点决定了,相对于机器的遗传算法,人脑的思维面显然更小,从而会漏掉不少局部极优解,错过全局最优解更是很自然的情况了。
往另一个角度来说,这种类似遗传算法的系宗只要足够大,那最终都可以用复杂系宗的观点来描述。而对于复杂系宗来说,系宗最终弛豫后的状态,并不是最好的状态,而是最可能出现的状态——当然,这取决于你对“好”这个抽象形容词的具体定义。
比如说,量子就是这种东西。虽然哪怕只有一个光子或者电子,但由于它走的是所有可能路径,因此单独一个粒子本身也构成了一个系宗。而这种量子系宗的结果我们都知道:并不是走最近的路径,而是走最可能的路径,所以才会有各种量子现象。
因此,回到思维思考的问题上,演化的最终结果就是说,我们最终思考的结果是一个最可能出现的想法,而不是一个最好的想法。
或者,再具体地说来,当我们考虑一个抽象问题(比如,不是1+1等于几这种很具体很实在的问题,而是诸如晚上吃什么这种很抽象的问题——好吧,这只是一个随口编的例子,不用较真)的时候,我们最终会得到的是按照我们的知识水平最有可能得到的解决这个问题的想法,而不一定是解决这个问题的最好的想法——甚至未必是我们能想到的所有方法中最好的那个。
同样的,将这种情况放宽到人群中以后,我们会发现,一群人讨论问题的最后结果,是以这群人的群体智慧能得到的最可能的结论,而不是这个群体智慧能得到的最好的结论——至于这两者的偏差到底多大,这个取决于群体的构成,以及彼此的默契程度,还有沟通情况。
我们想问题的时候,总是先有几个念头,然后大致想想,开始往其中几个念头上专注,然后会突然冒出别的想法,和这几个念头杂交一下,诞生新的一批想法,再挑几个专注思考。
这其实很想遗传算法等高级算法,挑出适应度高的,和别的杂交一下,不断演化。
所以,以遗传算法为例,想法就是具体的基因,从而在思考的时候,我们的知识水平以及在其下的对当前想法是否有助于解决一个问题的判断构成了这个想法的适应度函数,随后每次都会将一些显然没戏的给抛弃,将一些最后可能的着重考虑,将一些可能有戏的留着,说不定后来给忘了,也说不定以后会想起来继续思考。
而后,几个不同的想法之间往往也会有所碰撞,从而得到一些全新的想法,这个就不同基因之间的杂交,得到新的基因。
反复如上过程,直到只留下最后那个我们认为最可行的念头为止。
这是一个典型的遗传算法的过程。
当然,人脑执行起来还是会有一些不同的,比如某些想法会因为时间太久而被遗忘,这个在遗传算法中是不会出现的。
而且,人脑不可能同时对太多的念头进行处理,所以可以说适应度函数是很陡的,同时每一代基因的数量都很小。
这样的特点决定了,相对于机器的遗传算法,人脑的思维面显然更小,从而会漏掉不少局部极优解,错过全局最优解更是很自然的情况了。
往另一个角度来说,这种类似遗传算法的系宗只要足够大,那最终都可以用复杂系宗的观点来描述。而对于复杂系宗来说,系宗最终弛豫后的状态,并不是最好的状态,而是最可能出现的状态——当然,这取决于你对“好”这个抽象形容词的具体定义。
比如说,量子就是这种东西。虽然哪怕只有一个光子或者电子,但由于它走的是所有可能路径,因此单独一个粒子本身也构成了一个系宗。而这种量子系宗的结果我们都知道:并不是走最近的路径,而是走最可能的路径,所以才会有各种量子现象。
因此,回到思维思考的问题上,演化的最终结果就是说,我们最终思考的结果是一个最可能出现的想法,而不是一个最好的想法。
或者,再具体地说来,当我们考虑一个抽象问题(比如,不是1+1等于几这种很具体很实在的问题,而是诸如晚上吃什么这种很抽象的问题——好吧,这只是一个随口编的例子,不用较真)的时候,我们最终会得到的是按照我们的知识水平最有可能得到的解决这个问题的想法,而不一定是解决这个问题的最好的想法——甚至未必是我们能想到的所有方法中最好的那个。
同样的,将这种情况放宽到人群中以后,我们会发现,一群人讨论问题的最后结果,是以这群人的群体智慧能得到的最可能的结论,而不是这个群体智慧能得到的最好的结论——至于这两者的偏差到底多大,这个取决于群体的构成,以及彼此的默契程度,还有沟通情况。
量子場論- 維基百科,自由的百科全書 - Wikipedia
zh.wikipedia.org/zh-hk/量子场论
量子场论- 维基百科,自由的百科全书
zh.wikipedia.org/wiki/量子场论
轉為繁體網頁
轉為繁體網頁
[DOC]隨機過程在量子場論計算中的應用
psroc.phys.ntu.edu.tw/bimonth/v27/500.doc
量子场论中关联函数的泛函积分推导--《辽宁师范大学》2013年 ...
cdmd.cnki.com.cn/Article/CDMD-10165-1014138550.htm - 轉為繁體網頁
由 仲偲晋 著作 - 2013
泛函积分形式是量子场论的另一种表述形式,利用泛函积分的方法可以直接从拉氏量出发,对场进行量子化,导出任意n点关联函数,给出费曼规则,而且能自始至终保持 ...量子力学和量子场论的不相恰? - 物理学- 知乎
www.zhihu.com/question/22676889
轉為繁體網頁
轉為繁體網頁
[PDF]全像原理: 場論與重力的世紀婚禮
phy.ntnu.edu.tw/~linfengli/articles/holography.pdf
共形场论第1卷(豆瓣) - 豆瓣读书
book.douban.com/subject/3608902/
轉為繁體網頁
轉為繁體網頁
什么是重整化? - 量子场论的路径积分 - Google Sites
https://sites.google.com/site/.../renormalization1 - 轉為繁體網頁
场论- 弦乐四重奏- 博客大巴
xyzhongzhi.blogbus.com/tag/场论/
轉為繁體網頁
轉為繁體網頁
No comments:
Post a Comment