Saturday, February 14, 2015

brain gauge path integral white 不是弦共振頻率的部分很快就會衰減,最後剩下的頻率才是傳到我們耳朵的聲音

不是弦共振頻率的部分很快就會衰減,最後剩下的頻率才是傳到我們耳朵的聲音

http://highscope.ch.ntu.edu.tw/wordpress/?p=19239


聲音的共振–共鳴(Acoustic Resonance)


Print Friendly
聲音的共振--共鳴(Acoustic Resonance)國立彰化高級中學物理科劉翠鵑老師/國立臺灣師範大學物理系蔡志申教授責任編輯
共鳴是指發聲體受到其固有頻率(或稱共振頻率)的外力驅動時,會比被其他頻率外力驅動時吸收更多能量。共鳴就是振動頻率在人聽覺範圍內(頻率是介於20Hz~20000Hz之間)的共振現象。一般而言,聲音的共振體會有一個以上的共振頻率,尤其頻率是最低頻整數倍(通常把這樣頻率的聲音稱為諧音)共振強度最強。亦即當一個含各種頻率的波動(例如:脈衝波、噪音等)傳至共振體,共振體會過濾掉除了共振頻以外的頻率。大多數的樂器在製造時,皆須考慮到共鳴的效應。透過共鳴箱的設計,可以使振動的空氣量增加,例如:小提琴或吉他的音箱。
弦樂器中,如:如琵琶,豎琴,吉他,鋼琴,小提琴等,弦在張緊的情況下也有所謂的共振頻,而且這些弦樂器的共振頻是由弦的質量、長度與弦張力決定的。產生第一共振頻(即最低頻,也稱基頻或基音)的波長恰為弦長的兩倍,至於其他更高共振頻(也稱泛音)的波長則是基頻波長的整數倍分之一。這些對應的共振頻與弦波波速有關,如(1)式 06eq1.png其中 L 是弦長(兩端固定的弦), N = 1,2,3…
至於弦波或繩波波速 v 則與張力 T 和單位長度的質量 ρ 有關,如(2)式  06eq2.png
則共振頻率  06eq3.png其中 M 是弦的總質量
06pic1.png
張力愈大或弦長愈短可使共振頻率愈大。用手彈一下弦或用錘敲打產生一脈衝波在弦上傳播時,弦將會以各種頻率振動(脈衝波是由各種頻率的正弦波疊加而成的),但其中不是弦共振頻率的部分很快就會衰減,最後剩下的頻率才是傳到我們耳朵的聲音。此外,當某一弦發出聲音時可能會引發其他弦以其共振頻(基頻或更高頻)開始振動。例如:基頻440Hz的A弦振動時會引發基頻330Hz的E弦共振,因為兩弦同時有1320Hz的共振頻(A弦的第三諧音或第二泛音,E弦的第四諧音或第三泛音)。
至於空氣管的共鳴,則與管子的長度、形狀以及管子兩端開閉與否有關。將一端開一端閉的空氣管稱為閉管,兩端皆開的空氣管稱為開管。管樂器中空氣管形狀通常是錐狀或圓柱狀,例如:長笛是圓柱狀的開管,單簧管和銅管樂器則是圓柱狀的必管,至於薩克斯風、雙簧管及Bassoon管則是錐狀的閉管。
空氣柱的振動跟琴弦一樣是以諧頻共振。
對於圓柱狀開管的共振頻率 06eq4.png其中 N 為正整數(1,2,3…),如下圖(二)所示
對應不同的駐波模式, L 代表空氣管的長度, v  代表空氣中的聲速(20℃ 的海平面聲速大約是 343m/s )
若要更準確的關係式,則應考慮管口的修正量(1860年H. von Helmholtz 詳盡地討論了管口修正的問題)
圓柱狀開管的共振頻率修正為 06eq5.png,其中 d 代表共振管的內徑。
此關係式說明了一個重要結論,空氣管開口端邊緣並非零聲壓,故聲波在開口端的反射位置不會恰好在管子的邊緣,而是由管邊緣向外延伸一小段距離的位置。當聲波傳到共振管的開口端時,其反射率略小於1。亦即開口端的聲阻抗不完全等於零,而是一個有限值(稱為輻射阻抗),且此阻抗與管徑、聲波波長及管口的樣式有關。
06pic2.png
對於圓柱狀閉管的共振頻率 06eq6.png其中 N 為奇數(1,3,5…),如下圖(三)所示
這種管子只有奇數的共振頻,而且它的基頻大小是相同管長的開管基頻之半。若考慮管口的修正,圓柱狀閉管的共振頻率為 06eq7.png06pic3.png
參考資料:1.維基百科--共鳴  http://en.wikipedia.org/wiki/Acoustic_resonance
圖片來源:
http://www.physics.umd.edu/lecdem/misc/phys102/PH102chap03.ppt





There is 1 comment for this article
  1. wood at 14:34:48

    劉老師、蔡教授請教:
    共鳴箱(如小提琴、吉他),如何與這麼多的音共振?這些音與音的頻律並非都是簡單的倍數關係(12音律, Do:523Hz,Re:587Hz)。
    另外,一個樂器發出的音(如直笛所吹出的Do),因除了基音外,還有其他的泛音。那我們所謂的音諧是指基音嗎?看過其他資料顯示,基音有時並非音量最大的音(如橫笛最大音量是第一泛音,單簧管最大音量是第四泛音)。
    謝謝!祝教安!

相对速度,群速度相速度,快慢光,超光速,光孤子,飞秒阿秒
已有 3093 次阅读 2013-1-13 02:08 |个人分类:科普|系统分类:科普集锦|关键词:Microsoft 数学题 小学生 相对论 style
一不小心,一道小学生的数学题在科学网上引发一场众人关注的血案(小红花)

先是一篇鲍博主的《相对论---破解一道小学数学题 》,本来就是一个‘相对速度’的问题,被望文生意成爱因斯坦的‘相对论’,于是引来一批人围观,指指点点,岂不知,大多数人的指点都是错误的,因为思维上没有转弯,还不如队伍中的最后那位,跑到最前头就180度的急转弯。

然后来了一篇《补记》,的确,这个和这类问题不应该送给小学生去考虑,至少它用到了根号问题。合适的问题可以是一位博友说的,一位在行进的火车上跑前跑后的问题。

我开始注意到的时候,也就已经血流遍地了,就是程博主的《也谈“相对速度”》。
这个问题的原本就是那头无头的苍蝇来回飞的问题,地地道道的数学上的无穷级数问题:

程博主博文引用为:
(2) 关晴骁问题(见首篇[34])
两辆自行车A,B间隔100米相向而行,两车都是每秒走一米,他们出发那一刻,一苍蝇每秒2米的速度从A车直线往B车飞,飞到B车后转头又往A车飞,问两车相遇时,苍蝇飞了多少米? 

据说别人问哪个诺依曼来着,诺依曼立刻回答100米,然后那人很赞叹的说“我本还以为你会用无穷级数来算”,诺依曼说“我就是用那个算的”。。。好像出自《读者》?

这个无穷级数问题的超级简化,只取第一项,就是鲍博主提到的,继续引用如下,

鲍得海问题(见首篇[29]):一列队伍长M米,向前行驶,队伍中最后一个人,以较快的速度沿着同样的方向前进,当这个人走到队伍的最前头的时候,返回身来再往回走,一直走到队伍的最后,这时,整列队伍恰好向前行走了N米。提问:单独的这个人走了多少距离?

最后演化成为难倒小学生,大学生到一帮博主的问题,

一列队伍长一百米,向前行驶,队伍中最后一个人(二者均为匀速),以较快的速度沿着同样的方向前进,当这个人走到队伍的最前头的时候,返回身来再往回走,一直走到队伍的最后,这时,整列队伍恰好向前行走了100米。提问:单独的这个人走了多少路程?

这些问题的答案上面三篇博文中已经交待得很清楚了。但是,我觉得血流还远远不够,还需要继续大刀阔斧地往下砍,骨头需要劈开,看清楚里面的骨髓脑髓,自道是那白的红的一道露出来了。

关键核心问题是,一列队伍长M米,向前行驶,如果队伍中每一个人,以不同的速度沿着同样的方向前进,结果会怎样?

找到一个非常贴切的例子是,物理学中光学学科的群速度,相速度和相关的超光速,慢光速问题。

对于这个行进中的队伍,就是一个光脉冲,其中包括了很多光的频率,怎样一起向前传播的问题。这里每一个光的频率是vi,对应一个波长 λi

相速度:是对个人来说的,队伍中每一个人的行进速度不同;就是说光脉冲中每个光频率(vi)的传播速度不同(因此每个光波的频率不相同),每个频率都有一个自己的相速度。

群速度:就是整个队伍的行进速度,光脉冲中许多不同频率的光波合成在一起在介质中传播的整体速度。不同频率波的振幅和相位不同,在介质中,相速度因此不同,故在不同的空间位置上的合成信号形状会发生变化。群速度是一个代表整体能量的传播速度。

关键一点是,队伍中每个成员的体力和身体素质不同,导致相速度不同,行进中会产成队伍的次序重组现象,有的开始靠前,过一段时间/距离以后就变得靠后,反之亦然,开始时刻靠后的,后来会变得靠前,也有可能更靠后,这样队伍会被缩短,或者拉长,特殊情况也就是理想状况下,各个成员身体素质和体力相同,则队伍形状不变。

相对应,光脉冲向前传播中的过程完全类似,因为介质(真空除外)都有一定的折射率n,对每个光波长(λi频率vi))不同,称为 ni,导致不同光频率(vi)的传播速度(相速度)也不同。所以,光脉冲会被介质拉长,这是最普遍情况,甚至缩短,这是极少情况,甚至在特定情况下相对速度不变,叫做光孤子。缩短情况也是相对而言的,因为缩到最短之后再继续向前传播就是拉长了,这就相当于,开始的队伍前头落到了最后头,体力跟不上了,把队伍拉长了,甚至最后掉队了。

这里顺便把快光速(也叫超光速)和慢光速问题也就说明了,这两个术语就是指的是光的相速度相对于群速度问题。还可以比喻说,一列队伍缓慢进行,有队员脚步跳得很快但是实际上没有向前跑很快,极端情况是原地踏步走。也有队伍行进快,但是队员迈步较慢但是步伐很大的情况(完全跟得上队伍),这就是慢光速了,极端的例子是光速为零,这个领域每隔几年 媒体就会热炒,外行吃惊,内行则不以为然。

现在的光速大概是每秒30万公里,托爱因斯坦他老人家引入的这个假设的福,这个极限我不相信在宇宙中我们所处的这一块领地能够被打破。至于2011年的意大利的中微子超光速一说,这里的超光速是指群速度而不是相速度,刚出现的时候真正内行人中大家的直觉就是乌龙,事后证明的确是,因为他们的那一套实验虽然复杂但是原理根本不靠谱。

回到光波的队伍传播话题上来。光纤通讯中这就有一个很现实很重要的关键问题:光脉冲在光纤中传播的时候不管拉长还是缩短,最终结果是拉长,都会造成失真,导致接受到的光脉冲信号和发出去的光脉冲信号混淆乃至分不清,从而达不到传输信号的作用。现在使用的妥协办法就是,让前后发出的光脉冲队伍间隔时间加长,这个就算每个光脉冲拉长了,到达终点的时候还能分得开,没有跟后面的队伍混淆一起。所以,现在的光纤通讯都要有中继站,一则补充传输中信号强度的损失,二者重新注入新的光脉冲,这相当于恢复光脉冲队伍的原有形状。比如,北京到广州的火车(或者上海到拉萨)虽有直达特快,但是中途仍然需要停靠以补充用水食品等,高铁通了,这样的折腾减少了,这就是高技术的进步。但是,北京到广州的光纤通讯,还需要很多中继站,好像是让光脉冲的火车停靠以加水加食品,实际上是换了光脉冲的火车而已,信息需要从一列光火车换乘到另一列。如果我们的光纤通讯技术能做到,光脉冲从北京进去直达广州再出来,中间不停靠不换光火车,那就是特别高的高技术了。 这就需要发展光纤通讯的高铁技术——光孤子通讯技术了。所谓的光孤子通信技术,就是发展出特定的光脉冲,在特定的光纤里面传播特别长一段距离,光脉冲的队伍依然很整齐(参见下图左)。这跟高铁跑在专用轨道上一个道理。这里是高技术,也包含了深刻了科学前沿领域。

  

更深刻更科学前沿一点,就再多说一点点本博主的老本行,飞秒激光(femto-second laser)。飞秒激光就是一种非常短的光脉冲,这个光的队伍特别长,就是说对应的光波长(λi)很多,越多光波长加进去这个队伍,这个光脉冲时间就很有可能更短(量子测不准原理决定的)。现在同行都知道,把整个可见光都包括进去都已经很容易了,看起来就是白光,跟太阳光谱非常接近,也就是说,很容易展示出一个飞秒光脉冲,用牛顿的三角棱镜散开以后看到从深蓝到深红都有,技术上这一点都不麻烦(见上图右)。关键问题是,如果管理好这个光频率队伍前进中的整齐度问题,因为这个队伍太容易被拉长而变形得不像样,也就是说保持飞秒的传播很困难,顺便,光孤子通讯技术也在这个领域。顺便多说一句,日常照明的荧光灯的那个白光不是真正的白光,里面包含了太阳白光的几个很窄的波段,用以骗过人的眼睛而已。

那么,能不能包含更多更多的光波长(λi)进来,从而把这个光脉冲的时间变得比飞秒还短?答案是肯定的,absolutely true! 这个新术语就是阿秒(atto-second)。但是,可见光范围内的光波长(λi)还是太长,实现起来特别困难,人们就移到X-射线领域,那里频率非常高就是波长非常短,相对而言可以得到很长的光波队伍,才可能够容易地得到阿秒激光。这个领域是高技术最前沿,也是科学的一大前沿。目前,世界上只有一个课题组宣称得到了阿秒(某西方国家),很多人表示基本认可,但是需要其它课题组重复出来,也就是实验验证。整个世界的主要国家都在努力进行,第二个和后来的结果也许证明第一个结果是对的,那么前两家有可能得到诺奖!如果后来证明第一家的是错误的,那就还需要推倒重来,重新争做世界上第一个阿秒王/阿秒帝。anyway,这个领域需要诺奖,不言而喻!

不好意思,从一个小学生的简单数学问题,扯到了如此的科学和技术前沿,实质就是一个队伍向前行进中的队形问题。 
你也可以倒过来说,科学和高技术的前沿,其实也是小学生级别的问题,这样看,大家都是小学生了,难道不是吗?

No comments:

Post a Comment