Home | News | Magazine | Library | Encyclopedia | Review | Essay | Forum |
2002
年2月8日 星期日
|
|
“我思故我在。”——笛卡尔 1. 研究的一般性质和目的 这本小册子是一位理论物理学家对大约四百名听众作的一次公开讲演。虽然一开始就指出这是一个难懂的题目,而且即使很少使用物理学家最吓人的数学演绎法这个武器,讲演也不可能是很通俗的,可是听众基本上没有减少。其所以如此,并不是由于这个主题简单得不必用数学就可以解释了,而是因为问题太复杂了,以致不能完全用数学来表达。使得讲演至少听上去是通俗化的另一个特点是,讲演者力图把介于生物学和物理学之间的基本概念向生物学家和生物学家讲清楚。 实际上涉及的论题是多方面的,但整个任务只是打算说明一个想法——对一个重大的问题的一点小小的评论。为了不迷失我们的方向,预先很扼要地把计划勾画出来也许是有用的。 这个重大的和讨论得很多的问题是: 在一个生命有机体的空间范围内,在空间上和时间上发生的事件,如何用物理学和化学来解释? 这本小册子力求阐明和确立的初步答案概括如下: 当前的物理学和化学在解释这些问题时明显的无能为力,决不是成为怀疑这些事件可以用物理学和化学来解释的理由。 2. 统计物理学 结构上的根本差别 如果说过去的碌碌无为只是意味着激起未来获得成功的希望,那未免太轻描淡写了。它有着更为积极的意义,就是说,迄今为止,物理学和化学的这种无能为力已得到了充足的说明。 今天,由于生物学家,主要是遗传学家在最近三、四十年来的创造性工作,关于有机体的真实的物质结构及其功能的了解已经足以说明,并且是精确地说明现代的物理学和化学为什么还不能解释生命有机体内在空间上和时间上所发生的事件。 一个有机体的最要害部分的原子排列,以及这些排列的相互作用的方式,跟迄今被物理学家和化学家作为实验和理论对象的所有原子排列是根本不同的。除了深信物理学和化学的定律始终是统计学的哪些物理学家外,别的人会把我所说的这种根本差别看成是无足轻重的。这是因为认为生命有机体的要害部分的结构,跟物理学家或化学家在实验室里、在书桌边用体力或脑力所处理的任何一种物质迥然不同的说法,是同统计学的观点有关的。因此,要把物理学家或化学家如此发现的定律和规则直接应用到一种系统的行为上去,而这个系统却又不表现出作为这些定律和规则的基础的结构,这几乎是难以想像的。 不能指望非物理学家能理解我刚才用那么抽象的词句所表达的“统计学结构”中的差别,更不必说去鉴别这些差别之间的关系了。为了叙述得更加有声有色,我先把后面要详细说明的内容提前讲一下,即一个活细胞的最重要的部分——染色体纤丝——可以恰当地称之为非周期性晶体。迄今为止,在物理学中我们碰到的只是周期性晶体。对于一位不高明的物理学家来说,周期性晶体已是十分有趣而复杂的东西了;它们构成了最有魅力和最复杂的一种物质结构,由于这些结构,无生命的自然界已经使得物理学家穷于应付了。可是,它们同非周期性晶体相比,还是相当简单而单调的。两者之间结构上的差别,就好比一张是一再重复出现同一种花纹的糊墙纸,另一幅是巧夺天工的刺绣,比如说,一条拉斐尔花毡,它显示的并不是单调的重复,而是那位大师绘制的一幅精致的、有条理的、有意义的图案。 我把周期性晶体称为他所研究的最复杂的对象之一时,我说的他是指物理学家本身。其实,有机化学家在研究越来越复杂的分子时,已经十分接近于那种“非周期性晶体”了,依我看来,那正是生命的物质载体。因此,有机化学家对生命问题已作出了重大贡献,而物理学家却几乎毫无作为,也就不足为奇了。 3. 朴素物理学家对这个主题的探讨 如此简要地说明了我们研究的基本观点——或者不如说是最终的范围——以后,让我来描述一下研究的途径。 首先我打算阐明你可能称之为“一个朴素物理学家关于有机体的观点”,就是说,一位物理学家可能会想到的那些观点。这位物理学家在学习了物理学,特别是物理学的统计学基础以后,他开始思考有机体的活动和功能的方式时,不免要扪心自问:根据他所学到的知识,根据他的比较简明而低级的科学观点,他能否对这个问题作出一些适当的贡献? 结果他是能够作出贡献的。下一步必须是把他理论上的预见同生物学的事实作比较。于是,结果将说明他的观点大体上是通情达理的,但需要作一些修正。这样,我们将逐渐接近于正确的观点,或者谦虚点,将接近于我认为是正确的观点。 即使我在这一点上是正确的,我也不知道我的探索道路是否是一条真正的终南捷径。不过,这毕竟是我的道路。这位“朴素物理学家”就是我自己。除了我自己的这一条曲折的道路外,我找不到通往这个目标的捷径。 4. 为什么原子是如此之小? 阐明“朴素物理学家的观点”的一个好方法是从这个可笑的、近乎是荒唐的问题开始的:为什么原子是如此之小?首先,它们确实是很小的。日常生活中碰到的每一小块物质都含有大量的原子。要使听众了解这个事实,曾经设想过许多例子,但没有比凯尔文勋爵所用的一个例子能给人以更深刻的印象:假设你能给一杯水中的分子都做上标记,再把这杯水倒进海洋,然后彻底地加以搅拌,使得有标记的分子均匀地分布在全世界的所有海洋中;如果你在任何地方从海洋中舀出一杯水来,你将发现在这杯水中大约有一百个你标记过的分子。 原子的实际大小约在黄色光波长的1/5000到1/2000之间。这个比较是有意义的。因为波长粗略地指出了在显微镜下仍能辨认的最小粒子的大小。就拿这么小的粒子来说,它还含有几十亿个原子。 那么,为什么原子是如此之小呢? 这个问题显然是一种遁辞。因为这个问题的目的并不是真正在于原子的大小。它关心的是有机体的大小,特别是我们的肉体本身的大小。当我们以日常的长度单位,比如码或公尺作为量度时,原子确实是很小的。在原子物理学中,人们通常用所谓埃,即一公尺的一百亿分之一,或以十进位小数计算则是0.0000000001公尺。原子的直径在1到2埃的范围内。日常单位(对它而言,原子是如此之小)同我们身体的大小是密切相关的。有一个故事说,码是起源于一个英国国王的幽默。他的大臣问他采用什么单位,他就把手臂向旁边一伸说:“取我胸部中央到手指尖的距离就行了。”不管它是真是假,这个故事对我们来说是有意义的。这个国王很自然地会指出一个可以同他自己的身体相比较的长度,他知道其他任何东西都将是很不方便的。不管物理学家怎样偏爱“埃”这个单位,但当他做一件新衣服时,他还是喜欢别人告诉他新衣需用六码半花呢,而不是六百五十亿埃的花呢。 这样就确定了我们提出的问题的真正目的在于两种长度——我们身体的长度和原子的长度——的比例,而原子的长度具有独立存在的无可争辩的优越性,于是,应该这样提问题:同原子相比,我们的身体为什么一定要这么大? 我能够想像到,许多聪明的物理学和化学的学生会对下列引为憾事的,就是说,我们的每一个感觉器官,构成了我们身体上多少是有点重要的部分,因而(从所提到的比例大小来看),它们是由无数原子组成的,这些感觉器官对于单个原子的碰撞来说是过于粗糙了。单个原子我们是看不见,摸不到的。我们关于原子的假说远远不同于我们粗大迟钝的感官所直接发现的东西,而且也不能作直接考察的检验。 一定是那样的吗?还有没有内在的原因可以解释呢?为了确定并解释为什么感官不合乎自然界的这些定律,我们能从这种事态追溯到某种最重要的原理吗? 这是物理学家能够完全搞清楚的一个问题。对所有提问的回答都是肯定的。 5. 有机体的活动需要精确的物理学定律 如果有机体的感官不是这么迟钝,而且能敏锐地感觉到单个原子,或者即使是几个原子都能在我们的感官上产生一种可知觉的印象——天哪,生命将象个什么样子呢?有一点是要着重指出的:可以断言,一个那种样子的有机体是不可能发展出有秩序的思想的,这种有秩序的思想在经历了漫长的早期阶段后,终于在许多其他的观念中间形成了关于原子的观念。 尽管我们单单谈了上面这一点,下述的一些考虑对于大脑和感觉系统以外的各个器官的功能也是适用的。然而对我们自身来说,最感兴趣的唯一的一件事是:我们在感觉、思维和知觉。对于产生思想和感觉的生理过程来说,大脑和感觉系统以外的所有其他器官的功能只是起辅助作用,假如我们不是从纯客观的生物学观点来看,至少从人类的观点来看是如此的。此外,这将大大有利于我们去拣那种由主观事件紧密伴随着的过程来进行研究,尽管我们对这种紧密的平行现象的真正性质是一无所知的。其实,据我看来,那是超出了自然科学范围之外的,而且也许是完全超出了人类理解之外的。 于是,我们面临着下述问题:象我们的大脑这样的器官以及附属于它的感觉系统,为了使它的物理学上的变化状态密切地对应于高度发展的思想,为什么必须由大量的原子来构成呢?大脑及感官,作为一个整体的功能,或是在它直接同环境相互作用的某些外周部分中的功能,跟一台精巧而灵敏到足以反映并记录来自外界的单个原子的碰撞的机器相比,根据什么理由说它们是不相同的呢? 理由是,我们所说的思想(1)它本身是一个有秩序的东西,(2)只能应用于具有一定程度的秩序的材料,即知觉或经验。这有两种结果。第一,同思想密切对应的躯体组织(如密切对应于我的思想的我的头脑)一定是十分有秩序的组织,那就意味着在它内部发生的事件必须遵循严格的物理学定律,至少是有高度的准确性。第二,外界其他物体对于那个物理学上组织得很好的系统所产生的物理学印象,显然是对应于相应思想的知觉和经验的,构成了我所说的思想的材料——知觉和经验。因此,在我们的系统和别人的系统之间的物理学上的相互作用,一般来说,它们本身是具有某种程度的物理学秩序,就是说,它们也必须遵循严格的物理学定律并达到一定程度的准确性。 6. 物理学定律是以原子统计学为根据的,因而只是近似的 仅由少量原子构成的,对于一个或几个原子的碰撞就已经是敏感的有机体,为什么也还是不能实现上述的一切呢? 因为我们知道,所有的原子每时每刻都在进行着毫无秩序的热运动,就是说,这种运动抵消了它们的有秩序的行动,使得发生在少量原子之间的事件不能按照任何已知的定律表现出来。只有在无数的原子的合作中,统计学定律才开始影响和控制这些集合体的行为,它的精确性随着包括的原子数目的增加而增加。发生的事件就是通过那样的途径获得了真正有秩序的特征。现已知道,在生命有机体中起重要作用的所有物理学和化学的定律都是这种统计学的定律;人们所能想到的任何其他种类的规律性和秩序性,总是被原子的不停的运动所扰乱,或是被搞得不起作用。 7. 它们的精确性是以大量原子的介入为基础的。第一个例子(顺磁性) 我想用几个例子来说明这一点。这是从许多例子中随便举出几个,对于初次了解事物的这种状态的读者来说,不一定正好就是他最满意的例子。这里所说的事物的这种状态在现代物理学和化学中是基本的,就象生物学中的有机体是细胞组成的,或天文学中的牛顿定律,甚至象数学中的整数序列1,2,3,4,5……等基本事实一样。不应该指望一位十足的外行人读了下面几页就能十分理解和领会这个问题,这个问题是同路德维希?玻尔兹曼和威拉德?吉布斯的光辉名字联在一起的,在教科书中称之为“统计热力学”。 如果你在一个长方形的水晶管里充氧,并把它放入磁场,你会发现气体被磁化了。这种磁化是由于氧分子是一些小的磁体,它们象罗盘针似的有着使自己与磁场平行的趋向。可是你千万别认为它们全都转向了平行。因为如果你把磁场加倍,氧气中的磁化作用也会加倍,磁化作用随着你用的场强而增加,这种按比例的增加可以达到极高的场强。 这是纯粹统计学定律的一个特别清楚的例子。磁场要产生的取向不断地遭到随机取向的热运动的对抗。这样斗争的结果,实际上只是使偶极轴同场之间的锐角比钝角稍占优势。虽然单个原子在不断地改变它们的取向,然而平均地来看(由于它们的数量巨大),一种朝着场的方向并与之成比例的取向稍占优势。这一创造性的解释是法国物理学家P.郎之万作出的。它可以用下面的方法来验证。如果观察到的弱磁化确是对抗趋势的结果,就是说,如果确是梳理了所有分子使之平行的磁场、同随机取向的热运动的对抗趋势的结果,那就应该有可能通过减弱热运动来增强磁化作用,即用降低温度来代替加强磁场。实验已经证明了这一点,实验结果是磁化与绝对温度成反比,与理论(居里定律)是定量地相符的。现代的设备甚至能使我们通过降低温度把热运动减低到如此的不明显,以致能够表现出磁场自己的取向趋势,如果不是完全地表现,至少也足以产生“完全磁化”的一个实质性部分。在这种情况下,我们不再指望场强加倍会使磁化加倍;而是随着场的增强,磁化的增强越来越少,接近于所谓的“饱和”。这个预期也定量地被实验所证实了。 要注意的是,这种情况完全依赖于产生可观察的磁化时进行合作的分子的巨大数量。否则,磁化就根本不会是恒定的,而将是无时无刻都在十分不规则地变化的,成为热运动同场之间相互抗衡消长的见证。 8. 第二个例子(布朗运动,扩散) 如果你把微滴组成的雾装进一个密封的玻璃容器的底部,你将发现雾的上面的界限在按一定的速度逐渐下沉。这种速度取决于空气的粘度和微滴的大小和比重。可是,如果你在显微下注视一粒微滴,你会发现它并不一直以恒定的速度在下沉,而是在作一种十分不规则的运动,即所谓布朗运动,只有平均地看,这种运动才相当于一种有规则的下沉。 这些微滴并不是原子,可是它们既小又轻,足以感觉到不断碰撞敲击它表面的分子中间单个分子的碰撞。它们就是这样地碰撞着,只是从平均来说才服从重力的影响。 这个例子说明,如果我们的感官也能感觉到只是几个分子的碰撞,那我们将会有多么莫名其妙和杂乱无章的经验呀。细菌和其他一些有机体是这么小,以致是受到这种现象的强烈影响的。它们的运动是由周围环境中的热的倏忽变动所决定的,它们自己没有选择的余地。如果它们自己有一点动力,它们还是有可能成功地从一处移到另一处,但是这还是有点困难的,因为热运动颠簸着它们,使它们象飘浮在汹涌大海中的一叶扁舟。 非常类似于布朗运动的一种现象是扩散现象。在一只装满液体,比如装满水的容器中,溶解少量的有色物质,比如高锰酸钾,并使浓度不完全一样。如果你对这个系统放手不管,那么就开始了很缓慢的“扩散”过程。高锰酸钾将从高浓度的地方向低浓度的地方散布,直到均匀地分布于水中为止。 关于这个简单的、显然不是特别有趣的过程来说,值得注意的是,决不是象人们所想像的那样,是由任何一种趋向或力量驱使高锰酸钾分子从稠密的地区迁到稀疏的地区——就象一个国家的人口分散到有更多活动余地的地区那样。在高锰酸钾分子那里,根本没有发生那样的事情。每一个高锰酸钾分子对所有其他的高锰酸钾分子来说,是完全独立地行动着,它很少彼此相碰。可是,每一个高锰酸钾分子,无论是在稠密的地区,还是在空旷的地区,都遭到水分子的不断撞击的同样命运,从而以一种不可预测的方向逐渐地向前移动——有时朝高浓度的方向,有时朝低浓度的方向,有时则是斜刺里移动。这种运动,常常同蒙住眼睛的人的活动相比拟。这个蒙住眼睛的人站在地面上,充满了某种“走路”的欲望,可是并没有选定任何特定的方向,因而不断地在变动着他的路线。 尽管所有的高锰酸钾分子都是这样随机地走动,还是产生了一种有规则的朝低浓度方向的流动,最后造成了均匀的分布,乍看起来,这是令人困惑不解的——但仅仅是乍看起来而已。如果你把它想像为一层层浓度几乎恒定的薄片,某一瞬间某一薄片所含的高锰酸钾分子,由于它们的随机走动,确实将以相等的几率被带到右边或左边去。但正是由于这一点,一个隔着二块相邻薄片的平面上通过的分子,来自左面的比来自右面的要多,这只是由于左面比右面有更多的分子在从事随机行走的缘故。只要是这种情况,平均将表现为一种自左到右的有规则的流动,直到均匀分布。 把这些想法译成数学语言时,精确的扩散定律可用偏微分方程来表达,我不打算解释这个方程式来麻烦读者,虽然它的含义用普通语言来说也是很简单的。这里之所以提到严格的“数学上精确的”定律,是为了强调它的物理学的精确性在每一项具体应用上一定还会受到挑战的。由于它是以纯机遇为根据的,所以它的正确性只是近似的。一般地说,如果它是一个极好的近似值,那也只是在扩散现象中有无数分子的合作的缘故。我们要预先考虑到,分子的数目愈少,偶然的偏差就愈大——在适合的条件下,这是可以观察到的。 9. 第三个例子(测量准确性的限度) 我要举的最后一个例子同第二个例子是类似的,但它有特殊的意义。悬挂在一根细长纤丝上的平衡取向的轻物体,用电力、磁力或重力使它围绕垂直轴扭转,物理学家常用这种方法来测量使它偏离平衡位置的微弱的力(当然,这种轻物体必须视具体目的而适当地选用)。在不断努力改进这种常用的“扭力天平”的准确度时,遇到了一个奇妙的极限,极限本身是极其有趣的。选用愈来愈轻的物体和更细更长的纤丝——使这个天平能够感应愈来愈弱的力——当悬挂的物体愈明显地感受到周围分子的热运动的冲击,而在它的平衡位置附近开始进行象第二个例子中的微滴的颤动那样一种不停的、不规则的“舞蹈”时,就达到了极限。虽然这种动作并没有给天平的测量准确性设置绝对极限,但它却建立了一个实际上的极限。热运动的不可控制的效应同被测量的力的效应相竞争,从而使这个观察到的单个的偏差变得无意义了。为了消除你的仪器的布朗运动的影响,你必须作多次的观察。我想,在我们目前的研究中,这个例子是特别有启发的。因为我们的感觉器官毕竟是一种仪器。如果它变得太灵敏,我们将看到它将是多么的无用。 10. 根号n律 暂且举这么多例子吧。我只想再补充一点,那些同有机体内部有关的,或同有机体与环境相互作用有关的物理学或化学定律,没有有关是不能被我们选作例子的。详细的解释也许要更复杂些,但要点总还是一样的因此再举这些例子就会变得千篇一律了。 但是,关于任何一个物理学定律都会有的不准确性,我想补充一点非常重要的、定量的说明。即所谓的根号n律。我先用一个简单例子来说明,然后再进行概括。 如果我告诉你,某一种气体在一定的压力和温度下具有一定的密度,以及如果我换一种说法,即在这些条件下,在一定的体积内(体积大小适于实验需要)正好有n个气体分子,那么你可以确信,如果你能在某一瞬间检验我的说法,你将会发现它是不准确的,偏差将是根号n这一级。因此,如果数目n=100,你将发现偏差大约是10,于是相对误差=10%。可是,如果n=1000000,你多半会发现偏差大约是1000,相对误差=0.1%。粗略地说,这个统计学定律是很普遍的。物理学和物理化学定律的不准确性在根号n分之一这一可能的相对误差之内,那里的n是进行合作以引起该定律——对某些想法或某种具体实验来说,在有重要关系的空间或时间(或两者)的范围内,使该定律产生它的作用——的分子数目。 由此,你们又一次看到了,一个有机体为了使它的内部生命和它同外部世界的相互作用,都能分享到很精确的定律的好处,它就必须有一个相当巨大的结构。不然的话,进行合作的粒子数将是太少了,“定律”也就太不准确了。特别迫切需要的是平方根。因为尽管一百万是一个相当大的数目,可是如果精确性只有千分之一,那么,对一个要宣称自己具有“自然界定律”的尊严的事物来说,并不是太好的。 |
|
首页 | 版权声明 | 本站导航 | 关于本站 | 联系我们 ?1999-2002 www.OurSci.org,All Rights Reserved. |
Home | News | Magazine | Library | Encyclopedia | Review | Essay | Forum |
2002
年2月8日 星期日
|
|
存在是永恒的;因为有许多法制保存了生命的宝藏;而宇宙从这些宝藏中汲取了美。——歌德 11. 古典物理学家的设想决不是无关紧要的,而且是错误的 于是,我们得到的结论是,一个有机体和它经历的全部生物学的有关过程,必须具有极其多的“多原子”结构,必须防止偶然的“单原子”事件起到太重大的作用。“朴素物理学家”告诉我们那是必要的,所以有机体可以具有足够精确的物理学定律,并依这些定律建立它的很有规律和很有秩序的功能。从生物学来说,这些先验地得出的(就是说,从纯粹的物理学观点得出的“结论,如何去符合实际的生物学事实呢? 乍看起来,人们往往认为这个结论是无关紧要的。比如说,三十年前的生物学家也许已经讲过这一点了,可是,对于强调统计物理学对有机体的重要性不亚于其他方面的通俗讲演者来说,这个结论还是十分合适的,但实际上这也不过是人所共知的道路而已。因为任何高等生物的成年个体不仅是它的躯体,而且是组成躯体的每一个单细胞都包含着”天文数字“的各种单原子。我们观察的每一个具体的生理过程,不论在细胞内或在细胞同周围环境的相互作用中,看来是——或者三十年前已经认为是——包含了这么多的单原子和单原子过程,这就保证了物理学和物理化学有关定律的有效性,即使按照统计物理学关于”大量数目”的严格要求,也能保证定律的有效性;这种严格要求就是我刚才用根号n律所说明的。 如今,我们知道这个意见是错误的。正如我们即将明白的,有许多小得不可思议的原子团,小到不足以显示精确的统计学定律,可是在生命有机体内,它们对极有秩序和极有规律的事件确实起着支配作用。它们控制着有机体功能的重要特征;在所有这些情况下,显示了十分确定而严格的生物学定律。 我必须开始概要地讲一下生物学,特别是遗传学的情况;换句话说,我必须简要地说明这门科学的现状,可是我对这门科学不是内行。但我不得不这么做,很抱歉,特别是对任何一位生物学家来说,我讲的是外行话。另一方面,请允许我多少带点教条式地向你们介绍流行的观点。不能指望一个蹩脚的理论物理学家能对实验材料作出任何象样而全面的评述,这些实验材料,一方面来自大量的、长期积累的、无比机智的繁育试验;另一方面,来自最精密的现代显微镜技术对活细胞的直接观察。 12. 遗传的密码正本(染色体) 让我在生物学家称之为“四维模式”的意义上使用有机体的“模式”这个词,它不仅是指成年有机体的、或任何其他发育阶段上的有机体的结构和功能,而且是指有机体开始繁殖自身时,从受精卵到成年阶段的个体发育的全过程。整个四维模式已知是由受精卵的结构决定的。此外,我们知道,主要是由受精卵的很小一部分结构,即它的细胞核决定的。这个细胞核在细胞的正常“休止期”内,往往表现为网状染色质,分散在细胞内。但在极其重要的细胞分裂(有丝分裂和减数分裂,见下文)过程中,可以观察到由一组颗粒构成的、常常呈纤维状或棒状的叫做染色体的东西,它的数目是8个或12个,人是48个。但是,我应该把数字写成2×4,2×6……2×24……,并且按照生物学家习惯意义上的用词,我应该称之为两套染色体。单个染色体,有时虽然可以从它的形状和大小,清楚地加以区分和单个地加以辨认,但是,两套染色体几乎是一模一样的。我们马上就会明白,一套来自母体(卵细胞),一套来自父体(精子)。这些染色体也许只不过是我们在显微镜下看到的、被当作是染色体的一种轴状骨架纤丝,它把个体未来发育的全部模式,和个体在成年时的机能的全部模式都包含在一种密码正本里。每一整套染色体都含有全部密码;因此,一般说来,作为未来个体的最初阶段的受精卵里有着密码的两个副本。 我们把染色体纤丝的结构称为密码正本时,我们的意思是说,拉普拉斯曾经陈述过一种直接揭示每一个因果关系的、洞察一切的思想,根据卵的结构就能告诉你在适宜的条件下,这个卵将发育成一只黑公鸡还是一只芦花母鸡,是长成一只苍蝇还是一棵玉米,一株石南,一只甲虫,一只老鼠或是一个女女人。我们还可以再补充一点,那就是卵细胞的外观是非常相似的;即使外观不相似,比如鸟类和爬虫类的卵就比较大,可是在与密码有关的结构上的差别并没有象营养物质的差别那么大。在这些卵中,营养物质是由于不言而喻的原因而增多的。 当然,“密码正本”这个名词太狭隘了。因为染色体结构同时也是促使卵细胞未来发育的工具。它是法典与行政权力的统一,或者用另一个比喻来说,是建筑师的设计同建筑工人的技艺的统一。 13. 身体通过细胞分裂(有丝分裂)而生长 在个体发育中,染色体是怎样行动的呢? 一个有机体的生长是由连续的细胞分裂所引起的。这样的细胞分裂叫做有丝分裂。考虑到我们的身体是由无数个细胞组成的,所以,在一个细胞的生命中,有丝分裂并不象人们所想的那样一种十分经常的事件。开始时生长是很快的。卵细胞分成两个子细胞,下一步发育成四个细胞,然后是8,16,32,64……等等。正在生长的身体的各个部分中,分裂频率并不是完全相同的,那样就会打破这些细胞数目的规则性。我们通过简单的计算便可推断出。平均只要50或60次连续的分裂,便足以产生出一个成人的细胞数,或者是这个细胞数的十倍,那就是把一生中细胞的更替也考虑在内了。因此,我的一个体细胞,平均来说,只是变成我的那个卵细胞的第五十代或第六十代的“后代”。 14. 在有丝分裂中每个染色体是被复制的 在有丝分裂中每个染色体是怎样行动的呢?它们是被复制了,两套染色体和密码的两个副本都是被复制了。这个过程在显微镜下已作了详尽的研究,并且是极其有趣的,可是它涉及的面太广,在这里不能一一细说了。突出的一点是:两个“子细胞”中的每一个都得到了跟亲细胞完全相似的、更完全的两套染色体的嫁妆。就染色体的宝库来说,所有的体细胞都是完全一样的。 我们对这种机构虽然了解得很少,但我们不能不认为,它一定是通过某种途径同有机体的机能密切相关的,因为每个单细胞,甚至是不太重要的单细胞,都具有密码正本的全套(两份)副本。不久以前,我们在报上看到蒙哥马利将军在非洲战役中,要他麾下的每一个士兵都仔细了解他的全部作战计划。如果确是那样的话(考虑到他的部队有高度的才能和可以充分信赖,看来这可能是真实的),它为我的例子提供了一个绝妙的类比,在这个类比中,相应的事实都是完全真实的。最令人惊异的是在整个有丝分裂中,始终保持着两套染色体。这是人们揭示的最令人惊奇的遗传机制的明显特点,只有在我们接下去要讨论的那种情况中,才偏离了这种规律。 15. 减数分裂和受精(配子配合) 就在个体开始发育以后,有一团细胞保留着,以便在发育后期产生出成年个体繁殖所需的所谓配子,至于是精细胞或卵细胞,这要根据情况而定。“保留”的意思是指它们在这段时期内不用于其他目的,以及进行很少几次有丝分裂。例外的或减数的分裂(称为减数分裂),是这样一种分裂,就是在成年阶段,这些保留的细胞通过减数分裂最后产生了配子,一般只是在配子配合发生以前的很短时间内才有这种分裂。在减数分裂中,亲细胞的两套染色体简单地分成二组,其中一组染色体进入二个子细胞中的一个,就是进入了配子。换句话说,减数分裂并不象有丝分裂那样地发生染色体数目的加倍而使染色体数目保持不变,因此每个配子收到的只有一半,就是说,只有密码的一个完整的副本而不是两个,例如人只有24个,而不是2×24=48个。 只有一个染色体组的细胞叫做单倍体(来自希腊文,单一)。因此,配子是单倍体,通常的体细胞是二倍体(来自希腊文,双份)。有三组、四组染色体,……或通常所说的在体细胞里有时有许多染色体组的个体,就称之为三倍体、四倍体……多倍体。 在配子配合中雄配子(精子)和雌配子(卵)都是单倍体,结合形成的受精卵,是二倍体。它的染色体组,一个来自母体,一个来自父体。 16. 单倍体个体 还有一点需要加以纠正。这一点对于我们的研究目的来说,虽然不是必不可少的,但却是很有意思的,因为它表明,每一套染色体组包含了“模式”的确实是相当齐全的密码正本。 也有一些例子说明减数分裂后并不立即受精的,单倍体细胞(“配子”)经历了多次有丝分裂,结果产生了全是单倍体的个体。雄蜂是没有父亲的!它所有的体细胞都是单倍体。如果你愿意的话,你可以叫它是一个大大扩大了的精子;事实上,也正如大家所知道的,起这样的作用正是雄蜂一生中的唯一任务。可是,这也许是一种荒谬的观点。因为这种情况并不是独一无二的。好多种植物,通过减数分裂产生单倍体配子,或称之为孢子,孢子落在地上就象一粒种子,发育成真正的单倍体植物,它的大小可以同二倍体相比拟。苔藓植物长有叶片的底部是单倍体植物,叫配子体,因为在它的顶端发育了性器官和配子,配子通过相互受精按通常的方式产生了二倍体植物,在裸露的茎的顶部生有孢子囊。通过减数分裂,在顶端的孢子囊中产生孢子,所以这个二倍体植物称为孢子体。当孢子囊张开时,孢子落地发育成长为有叶片的茎,如此等等。这个事件的过程称为世代交替。只要你愿意,你可以认为人和动物也是如此的。不过“配子体”一般是寿命极短的单细胞一代,至于是精子还是卵子那看情况而定。我们的身体相当于孢子体。我们的“孢子”是保留的细胞,通过这些细胞的减数分裂产生出单细胞的一代。 17. 减数分裂的显著关系 在个体繁殖过程中,重要的、真正是决定命运的事件并不是受精而是减数分裂。一组染色体来自父亲,另一组来自母亲。不论是机遇还是天意都无法干预这一事件。每个男人正好是一半遗传了他的母亲,一半遗传了他的父亲。至于有时是母系占优势,有时是父系占优势,那是由于另外一些原因,这些原因在后面会讲到的(当然,性别本身也就是这种优势的最简单例子)。 可是,当你把你的遗传起源追溯到你祖父母的时候,情况就不同了。让我盯住我父亲的那一套染色体,特别是其中的一条,比如说第五号染色体。这条染色体或是是我父亲从他父亲那里得到的第五号染色体的精确复制品,或者是我父亲从他的母亲那里得到的第五号染色体的精确复制品。1886年11月在父亲体内发生了减数分裂并产生了精子,几天以后,精子就在我的诞生中起作用了,究竟是哪一个精确复制品包含在精子里,机遇是50:50。关于我父亲的染色体组中的第1,2,3……24号染色体都是这种情况,而我母亲的每一条染色体也同样是如此。此外,所有48条染色体都是各自独立的。即使我们知道我父亲的第五号染色体来自我祖父约瑟夫?薛定谔,而第七号染色体究竟是来自我的祖父还是来自我的祖母玛丽?尼玻格娜的机会还是相等的。 18. 交换。特性的定位 根据以上所说,已经是默认了、或者可以说是明确地表明了一个具体的染色体是作为一个整体,或者来自祖父,或者来自祖母。换句话说,单个染色体是整个地传递下去的。可是,在后代中却有更多的机会出现祖父母遗传性的混合。事实上,染色体并不是、或者说并不是总是整个地传递下去的。在减数分裂中,比如说,在父体内的一次减数分裂中,染色体分离以前,两条“同源”染色体彼此紧靠在一起,在这段时间里,它们有时是整段地进行交换。通过这种叫做“交换”的过程,分别位于染色体不同部位上的两个特性,就会在孙儿女那一代分离,这时,孙儿女将是一个特性象祖父,另一个特性象祖母。这种既不罕见也不经常的交换的事实,yi为我们提供了特性在染色体上的位置的宝贵的信息。如要作全面的说明,我们就要在讲下一章之前引进许多没有介绍过的概念(如杂合性,显性等),这就超过了这本小册子的范围了,所以我只谈一下要点。 假如没有交换,由同一条染色体负责的两个特性将永远是一起遗传给下一代,没有一个后代会接受了其中的一个特性而不连同接受另一个特性的;可是,由不同的染色体负责的两个特性,将或者以50:50的机遇被分开,或者是必然地被分开。当两个特性位于同一祖先的同源染色体上的时候,那就是后一种情况,因为这种染色体是永远不会一起传给下代的。 交换打乱了这些规律和机遇。根据精心设计的广泛的繁育试验,仔细地记录后代特性的组成百分数,就可确定交换的几率。人们在作了统计分析后接受了所建议的工作假设,即位于同一条染色体上的两个特性之间的“连锁”被交换打断的次数愈少,则它们彼此靠得愈近。这是因为在它们之间形成交换点的机会少了,而位于染色体另一端上的特性,就会被每一次交换所分离(这个道理,同样适用于位于同一祖先的同源染色体上的特性的重新组合)。用这种方法,人们可以期望根据“连锁的统计”,画出每一条染色体的“特性图”。 这种预期已完全得到证实。在经过充分试验的一些材料中(主要是果蝇,但不仅是果蝇),受试验的特性确实是分成了几个群,群与群之间没有连锁,几个群就象是几条不同的染色体(果蝇有四条染色体)。每个群内可以画出特性的直线图,这个图可以定量地说明该群内任何两个性状之间连锁的程度,所以这些特性无疑是定位的,而且是沿着一条直线定位的,就象所建议的棒状染色体。 当然,这里描绘的遗传机制的图式还是相当空洞而平淡的,甚至是有点质朴的。因为我们并没有说出,我们通过一个特性究竟了解到了什么。把本质上是个统一“整体”的有机体模式,分割成个别的“特性”,这看来既是不妥当的,也是不可能的。现在,我们在任何具体事例中实际说明的是,一对祖先如在某个方面确实存在着差别(比如,一个是蓝眼睛,另一个是棕色眼睛),那么,他们的后代,不是继承这一个就是继承另一个。在染色体上我们所定位的就是这种差别的位置(专门术语称之为“位点”)。我认为,真正的基本概念是特性的差别,而不是特性本身,尽管这样的说法有着明显的语言上和逻辑上的矛盾。特性的差别实际上是不连续的,下一章谈突变的时候,会谈到这一点,我希望到那个时候,迄今所提到的枯燥乏味的图式将变得较有生气和丰富多彩。 19.基因的最大体积 我们刚才已经介绍了基因这个名词,把它作为一定的遗传特性的假定性的物质载体。现在要着重讲两点,这对我们的研究是有重大关系的。第一,是这种载体的体积,或者更确切地说,它的最大体积;换句话说,我们对它的定位可以达到多小的体积?第二,是从遗传模式的持久性推论得出的基因的不变性。 关于体积,有两种完全不同的估计方法。一种是根据遗传学的证据(繁育试验),另一种是根据细胞学的证据(直接的显微镜观察)。第一种估计在原理上是很简单的。就是用上面讲过的方法,把某一条特定的染色体的各种不同的(宏观的)特性(就以果蝇为例)在染色体上定位以后,测量那条染色体的长度并除以特性的数目,在乘以染色体的横截面,就得出了我们所需要的估计数。当然,由于被我们算作是不同的特性,仅仅是被交换所偶然分离的那些特性,所以它们的(显微的或分子的)结构不会是一样的。另一方面,我们的估计数显然只能得出最大的体积,这是因为通过遗传学分析而分离出来的特性数目,将随研究工作的进行而不断增加的。 另一种估计,尽管是根据显微镜的观察,实际上也远远不是直接的估计。果蝇的某些细胞(即它的唾腺细胞),由于某种原因是大大地增大了的,它们的染色体也是如此。在这些染色体上,你可以分辨出纤丝上的深色横纹的密集图案。C.D.达林顿曾经说过,这些横纹的数目(他当时说是2000个)虽然比较多,但大体上等于用繁育试验得出的、位于染色体上的基因数。他倾向于认为,这些横纹带是标明了实际的基因(或基因的分离)。在一个体积正常的细胞里测得的染色体长度,除以横纹的数目(2000),他发现一个基因的体积等于边长为300埃的一个立方体。考虑到估计是很粗糙的,我们可以认为这跟第一种方法算出的体积是差不多的。 20. 很少的数量 我想起了在下面要充分讨论的是统计物理学对于所有事实的关系——也许我应该说,是这些事实对于统计物理学应用于活细胞的关系。不过让我们注意到应该事实,即在液体或固体中,300埃大约只有100个或150个原子距离,所以,应该基因包含的原子,肯定不会超过一百万个或几百万个。要遗传一种遵循统计物理学的,而且也是遵循物理学的有秩序、有规律的行为,这个数目是太少了(是从根号n观点来看)。即使所有这些原子全都是起相同的作用,就象它们在气体中、或在一滴液体中那样,这个数目还是太小了。基因肯定不是一滴均匀的液体,它也许是一个大的蛋白质分子,分子中的每一个原子,每一个自由基,每一个杂合环都起着各自的作用,同任何一个相似的原子、自由基或环所起的作用,多少是有些不同的。总之,这是霍尔顿和达林顿这些遗传学权威的意见,我们马上就要引用十分接近于证明这种意见的遗传学试验。 21. 不变性 现在让我们转到第二个有重大关系的问题上:在遗传特性上我们碰到的不变性的程度有多大,由此,我们必须把什么东西作为携带它们的物质结构呢? 回答这个问题是无需作专门研究的。就拿我们谈到了遗传特性这个事实来说,就已经表明我们是承认了不变性几乎是绝对的。我们千万不要忘记,父母传给子女的并不是这个或者那个特征,比如鹰沟鼻、短手指、患风湿症、血友病、二色眼的倾向等。我们可以很方便地选这些特征来研究遗传规律。可是,这种特征实际上是“表现型”的整个(四维的)模式,是个体的可见的、一目了然的性质,它们没有什么明显的改变而被复制了好几代,它们在几个世纪里是不变的——虽然不能说是几万年不变——在每次传递中,负载它们的是结合生成受精卵的两个细胞的物质结构。这真是个奇迹。只有一个奇迹更伟大;如果它同我们所说的奇迹是密切有关的话,那也是在不同水平上的奇迹。我指的是这个事实:我们的全部存在,完全是依靠这种奇迹的奇妙的相互作用,但我们是有能力去获得有关这种奇迹的许多知识的。把这种知识推进到几乎能完全了解第一个奇迹,我想这是可能的。第二个奇迹则可能是超越人类理解之上了。 |
|
首页 | 版权声明 | 本站导航 | 关于本站 | 联系我们 ?1999-2002 www.OurSci.org,All Rights Reserved. |
No comments:
Post a Comment