Tuesday, February 3, 2015

高能物理的目的在追尋基本交互作用規則 傳遞弱交互作用的W玻色子之所以帶有質量,其原理和超導體裡的光子也帶質量(即邁斯納(Meissner)效應)是一樣的。亦即對於弱交互作用來說,真空就是一個超導體

科技部

科技新知──四維量子霍爾效應

科技新知──四維量子霍爾效應
二十世紀物理有一件事非常奇特:高能粒子物理得向低能凝態物理取經。這與一般的想像相反,因為照理說,高能物理的目的在追尋基本交互作用規則,而其他物理學門僅是在了解與應用高能物理所找到的規則。所以高能物理是知識之源,如果有取經之事,應是其他學門向高能物理取經才對。而且高能物理研究的現象以能量論,是一般凝態現象的十億、百億倍以上,差異太大,怎麼可能有什麼類似之處?

但事實卻是,高能物理只有在取用了超導體 BCS 理論的精髓──「自發對稱破缺」之後,才找到正確的機制,建立起標準模型。具體一點地說,傳遞弱交互作用的W玻色子之所以帶有質量,其原理和超導體裡的光子也帶質量(即邁斯納(Meissner)效應)是一樣的。亦即對於弱交互作用來說,真空就是一個超導體。W玻色子是自旋為 1(以普郎克常數為單位)的向量粒子,所以應該用規範場來描述。但是在最單純的規範理論中,向量粒子不帶質量,而W玻色子的質量卻又不小。因此,要了解弱交互作用,最大的挑戰就是尋找一個賦予W玻色子質量的機制。除了前述的方法之外,其他賦予W玻色子質量的辦法都有缺點,行不通。也就是說,只有利用規範對稱的自發破缺規範,玻色子才能正當的獲得質量,而不會引出數學矛盾。此外,強交互作用的基本現象──「手徵對稱」自發破缺也是物理學家南部陽一郎(Y. Nambu)從超導體理論取得靈感,才提得出來的。

從表面上看,天南地北很不一樣的現象,其背後居然隱藏著同樣的機制,一定有深刻的道理。這道理來自於制關鍵在於粒子物理與凝態物理其實有著奧妙的共同點。粒子物理所依賴的量子場論就是無窮維理論,而凝態物理根本就是多(無窮)體物理,所以兩者所研究的系統都有無窮維自由度。從數學角度來看,無窮維問題比有限維問題難度高很多。單純靠數學推論,很不容易看出理論的涵義。如果有實際的凝態系統以為參照,我們可以歸納出憑空想像不到的量子態(即量子場論的解),在建造粒子模型時,是很大的助力。當然,反過來看,高能場論的技巧也可以幫助解決凝態物理問題。因此,每當無論是高能或是凝態物理有了進展,必然會有人想要將它應用到另一方。

No comments:

Post a Comment