Tuesday, November 3, 2015

微觀物理描述並沒有因果, 理查德·費曼及在他之前的厄恩斯特·斯蒂克爾堡,提出了一種對狄拉克方程負能量解的詮釋,就是正電子是逆時間而行的電子

保羅·狄拉克於1928年發表了一份論文[2],當中提出電子能夠擁有正電荷及負電荷。在這份論文中,狄拉克首次引進了狄拉克方程,這條方程統一了量子力學狹義相對論及電子自旋,而自旋當時還是一個很新的概念,用於解釋塞曼效應。論文中狄拉克並沒有明確地預測新粒子的存在,但他允許電子可以用正能量或負能量作解。正能量解成功解釋了實驗結果,但負能量解卻令狄拉克相當困惑,因為在他的數學模型中負能量解跟正能量解一樣有效。在量子力學中是不能夠無視負能量解的,這點就跟經典力學很不一樣;雙重解意味着電子有可能會在正負能量態間自發跳躍。然而,實驗並沒有觀測到這樣的躍遷。狄拉克把這個理論與觀測間的衝突稱為“未解決的難題”。
狄拉克於1929年十二月撰寫了一份後續論文,嘗試解釋相對論性電子那無可避免的負能量解[3]。他的論點是“……在外加(電磁)場中的負電荷粒子會像正電荷粒子那樣移動”。他繼續論述說所有空間都可被視為充滿負能量態的“海”,因此這樣就阻止了電子在正能量態(負電荷)與負能量態(正電荷)間的躍遷。論文同時探討了質子是這種海中的島的可能性,及這種島其實是負電荷電子的可能性。狄拉克承認,質子與電子的巨大質量差是一個難題,但同時表示將來的理論“有希望”解決這個問題。
對於狄拉克使用質子作為電子的負能量解,羅伯特·奧本海默表示強烈反對。他斷言如果這是真的,那麼氫原子就會瞬間自爆[4]。被奧本海默的論點說服,於是狄拉克在1931年發表了一篇論文,他在文中預測出一種未被發現的粒子,他叫這種粒子“反電子”,它的質量與電子一樣,並且與電子接觸時會互相湮滅[5]
理查德·費曼及在他之前的厄恩斯特·斯蒂克爾堡,提出了一種對狄拉克方程負能量解的詮釋,就是正電子是逆時間而行的電子[6]。逆時間而行的電子,其電荷為正電荷。約翰·惠勒援引這個概念,來解釋所有電子都共有的性質,同時指出在有自相互作用的複世界線上,“它們都是一樣的電子”[7]。後來,南部陽一郎將這樣的一套理論,應用於所有物質-反物質對的創生與湮滅,還說明了“平常所見成對的最終創生與湮滅,並不是創生與湮滅,而是移動中的粒子改變方向而已,從過去到將來,又或是從將來到過去”[8]。現時物理學家已經接受了逆時間觀點,與其他繪景等價,但這個詮釋卻沒有宏觀的“因果”,因為微觀物理描述並沒有因果

No comments:

Post a Comment