丘成桐院士演講:現代幾何的發展
episte.math.ntu.edu.tw/articles/mm/mm_16_4_09/
磁铁的同极相斥到底是什么原因
来自: 蠕行 2014-08-01 01:23:53
相斥是通过磁场作用的,但是磁场是什么?是一种物质?还是一种物质的场?如果是物质又是什么物质呢。如果是场这个场又是有什么构成的。
为什么旋转的电流会遵守右手定理产生磁场,电子和磁场到底是什么关系。
为什么旋转的电流会遵守右手定理产生磁场,电子和磁场到底是什么关系。
-
留空 2014-08-23 05:20:25
我总觉得麦克斯韦方程第二条(电流产生磁场)有点过于唯象了。电流本质上是运动的电荷,那么我们 我总觉得麦克斯韦方程第二条(电流产生磁场)有点过于唯象了。电流本质上是运动的电荷,那么我们就可以通过洛伦兹变换推导出运动电荷周围的磁场,进而推导出电流产生磁场。 ... 苦味酸这可以体现在麦克斯韦方程组的协变性里。麦克斯韦方程作为电磁场基本方程,应该适用于任意的电荷分布。而在最一般的情况下我们不能通过参考系变换让所有电荷都静止下来,因此麦克斯韦方程组必须同时描述电荷和电荷运动(速度)带来的电磁效应。
你觉得第二条方程唯象,可能是因为觉得宏观电流是一个相对“唯象”的概念,只要把电流用点电荷大小和速度表示出来就显得“本质”了。把方程写成四维形式会显得更自然,因为四维电流$J_\mu$很自然地描述了电荷及其运动,如同在爱因斯坦方程中能动张量$T_{\mu\nu}$很自然地描述了物质分布和运动一样。
-
滑头鬼 2014-08-23 22:14:26
这是量子场论的基本概念吧。在量子场论中,电磁场处于某个量子态上。电磁场的经典构型对应于相干 这是量子场论的基本概念吧。在量子场论中,电磁场处于某个量子态上。电磁场的经典构型对应于相干态。稳恒磁场是一种经典构型,因此属于相干态。从光子角度来看,电磁场的相干态就是光子的凝聚态。 ... Everett以防误解,你说的相干态指的是湮灭算符的本征态吧,可是这种相干态我记得对应的经典构型全都是有频率的电磁波啊,怎么弄出一个静磁场?另一个问题就是相干态和凝聚态有何关系?虽然比如我们常说BEC凝聚下的粒子高度相干,可是这里的相干指的应该仅仅是粒子的密度矩阵极度接近一个纯态吧。
-
Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2014-08-24 01:12:54
以防误解,你说的相干态指的是湮灭算符的本征态吧,可是这种相干态我记得对应的经典构型全都是有 以防误解,你说的相干态指的是湮灭算符的本征态吧,可是这种相干态我记得对应的经典构型全都是有频率的电磁波啊,怎么弄出一个静磁场?另一个问题就是相干态和凝聚态有何关系?虽然比如我们常说BEC凝聚下的粒子高度相干,可是这里的相干指的应该仅仅是粒子的密度矩阵极度接近一个纯态吧。 ... 滑头鬼1. "可是这种相干态我记得对应的经典构型全都是有频率的电磁波啊" 这句话不对。任何频率的电磁波都有相应的湮灭算符,从而有相应的相干态。这里“任何频率”包括频率 = 0,而静态的电磁场构型正是频率=0 的电磁波。
2. 量子光学中的相干态 = 凝聚态物理中的BEC凝聚态。这两个不同的名字指的是同一种波函数:玻色子湮灭算符的本征态。只不过是量子光学中的玻色子是光子,而凝聚态物理中的玻色子是冷原子。你可以去看冷原子物理的教材,里面会有一节专门讲为什么 BEC凝聚态 = 密度矩阵的非对角长程序 = 原子湮灭算符的本征态 = 相干态。
-
滑头鬼 2014-08-24 08:39:38
1. "可是这种相干态我记得对应的经典构型全都是有频率的电磁波啊" 这句话不对。任何频率的电磁波 1. "可是这种相干态我记得对应的经典构型全都是有频率的电磁波啊" 这句话不对。任何频率的电磁波都有相应的湮灭算符,从而有相应的相干态。这里“任何频率”包括频率 = 0,而静态的电磁场构型正是频率=0 的电磁波。 2. 量子光学中的相干态 = 凝聚态物理中的BEC凝聚态。这两个不同的名字指的是同一种波函数:玻色子湮灭算符的本征态。只不过是量子光学中的玻色子是光子,而凝聚态物理中的玻色子是冷原子。你可以去看冷原子物理的教材,里面会有一节专门讲为什么 BEC凝聚态 = 密度矩阵的非对角长程序 = 原子湮灭算符的本征态 = 相干态。 ... Everett1. 可是0频率湮灭算符的本征态应该是不同粒子数的0频率光子态的叠加吧,但是0频率光子不就是真空么? 那么有稳恒磁场的真空和纯粹的真空区别在哪。
2. 可以指明一本吗,我完全没看过冷原子的东西。不过我记得本科时候统计力学里学过,纯粹的光子不能形成BEC凝聚,因为粒子数可以减少,这和你讲的不矛盾吗?(当然可以凝聚到真空,不过这样问题又回到了1)
-
Phantom_Ghost (Glaube am Chaos) 2014-08-24 13:20:12
1. 可是0频率湮灭算符的本征态应该是不同粒子数的0频率光子态的叠加吧,但是0频率光子不就是真空 1. 可是0频率湮灭算符的本征态应该是不同粒子数的0频率光子态的叠加吧,但是0频率光子不就是真空么? 那么有稳恒磁场的真空和纯粹的真空区别在哪。 2. 可以指明一本吗,我完全没看过冷原子的东西。不过我记得本科时候统计力学里学过,纯粹的光子不能形成BEC凝聚,因为粒子数可以减少,这和你讲的不矛盾吗?(当然可以凝聚到真空,不过这样问题又回到了1) ... 滑头鬼经典的电场和磁场都是光子的相干态(就是那所谓最小不确定态),这也就是光子场各模态相位相干,量子光学里面是有讲的。相干态光子场的粒子数依旧具有一定涨落,在热力学极限下相对不确定度趋于零,粒子数精确度与相位精确度随着粒子数增大而迅速增大。粒子数和相干相位具有不确定关系$\delta N\delta\theta≥h$这一点和超流/超导的特点是一样的,所以说是一种凝聚态。电磁场真空就是零频极限的真空,有涨落,所谓纵光子,标量光子散射交换就是形成表观上的静电场和静磁场作用。
另外,BEC形成只要是boson都可以,光子气体完全可以凝聚成BEC(热统里面都讲得很清楚),只不过完全没有相互作用的BEC并不具有非对角长程序,因此和存在弱作用的BEC超流体是不同的。计算约化密度矩阵元就可看见这一点,是指数衰减的。
-
Everett (╮(╯▽╰)╭ ~(= ̄ U  ̄=)~) 2014-08-24 14:39:30
1. 可是0频率湮灭算符的本征态应该是不同粒子数的0频率光子态的叠加吧,但是0频率光子不就是真空 1. 可是0频率湮灭算符的本征态应该是不同粒子数的0频率光子态的叠加吧,但是0频率光子不就是真空么? 那么有稳恒磁场的真空和纯粹的真空区别在哪。 2. 可以指明一本吗,我完全没看过冷原子的东西。不过我记得本科时候统计力学里学过,纯粹的光子不能形成BEC凝聚,因为粒子数可以减少,这和你讲的不矛盾吗?(当然可以凝聚到真空,不过这样问题又回到了1) ... 滑头鬼零频率光子不是电磁场真空。留空同学的说法是错误的,他认为光子都要扰动真空,这不对。有电磁场和没有电磁场的差别是前者光子数不为0,而后者为0
-
留空 2014-08-24 21:58:06
经典的电场和磁场都是光子的相干态(就是那所谓最小不确定态),这也就是光子场各模态相位相干,量 经典的电场和磁场都是光子的相干态(就是那所谓最小不确定态),这也就是光子场各模态相位相干,量子光学里面是有讲的。相干态光子场的粒子数依旧具有一定涨落,在热力学极限下相对不确定度趋于零,粒子数精确度与相位精确度随着粒子数增大而迅速增大。粒子数和相干相位具有不确定关系$\delta N\delta\theta≥h$这一点和超流/超导的特点是一样的,所以说是一种凝聚态。电磁场真空就是零频极限的真空,有涨落,所谓纵光子,标量光子散射交换就是形成表观上的静电场和静磁场作用。 另外,BEC形成只要是boson都可以,光子气体完全可以凝聚成BEC(热统里面都讲得很清楚),只不过完全没有相互作用的BEC并不具有非对角长程序,因此和存在弱作用的BEC超流体是不同的。计算约化密度矩阵元就可看见这一点,是指数衰减的。 ... Phantom_Ghost粒子数不守恒的体系确实没有BEC,不过我想起了这篇文章:
http://www.nature.com/nature/journal/v46 8/n7323/full/nature0 9567.html
只要想办法让光子数守恒,也可以实现BEC,当然这是比较特别的情况。
-
Phantom_Ghost (Glaube am Chaos) 2014-08-24 22:15:06
粒子数不守恒的体系确实没有BEC,不过我想起了这篇文章: http://www.nature.com/nature/jour 粒子数不守恒的体系确实没有BEC,不过我想起了这篇文章: http://www.nature.com/nature/journal/v468/n7323/full/nature09567.html 只要想办法让光子数守恒,也可以实现BEC,当然这是比较特别的情况。 ... 留空像黑体辐射那种粒子数不守恒的热光子气体没实现零动量凝聚,所以不是BEC。一个开发系统有热浴接触那是没法形成BEC了。不过这里看所谓经典场是凝聚态,那自然不是热光子场,而是最低能的相干态(BEC),是基态(真空态)。
-
Phantom_Ghost (Glaube am Chaos) 2014-10-03 11:56:19
经典的电场和磁场都是光子的相干态(就是那所谓最小不确定态),这也就是光子场各模态相位相干,量 经典的电场和磁场都是光子的相干态(就是那所谓最小不确定态),这也就是光子场各模态相位相干,量子光学里面是有讲的。相干态光子场的粒子数依旧具有一定涨落,在热力学极限下相对不确定度趋于零,粒子数精确度与相位精确度随着粒子数增大而迅速增大。粒子数和相干相位具有不确定关系$\delta N\delta\theta≥h$这一点和超流/超导的特点是一样的,所以说是一种凝聚态。电磁场真空就是零频极限的真空,有涨落,所谓纵光子,标量光子散射交换就是形成表观上的静电场和静磁场作用。 另外,BEC形成只要是boson都可以,光子气体完全可以凝聚成BEC(热统里面都讲得很清楚),只不过完全没有相互作用的BEC并不具有非对角长程序,因此和存在弱作用的BEC超流体是不同的。计算约化密度矩阵元就可看见这一点,是指数衰减的。 ... Phantom_Ghost我之前这里有个地方讲得不对,ODLRO是BEC的特征,那么理想玻色气体的BEC和相互作用玻色体系的BEC不同在于前者无法形成超流相后者可以。计算长程极限下密度矩阵元得到都是凝聚态密度。http://www.douban.com/note/427021178/
-
Phantom_Ghost (Glaube am Chaos) 2014-10-28 10:46:01
om/p/3374823425 ,第7楼 ; 当年E大关于雪花结晶的分析讨论是非常奇妙的。
No comments:
Post a Comment