Quantum Mechanics 2006
Department of Modern Physics
http://quantum.ustc.edu.cn/old/teaching/qm2/
University of Science and Technology of China
The final grades are based on the homeworks, midterm exam and final exam.
Class No.: 02214800
Class Schedule:
6,7,8( 1:30pm-4:00pm ) on Monday, room 1102( Note: Using room 4703 on 25th Sept.)
11,12,13( 7:00pm-9:30pm ) on Thursday, room 2221
Instructor:
Prof. Yongde Zhang, Department of Modern Physics, USTC
Telephone: 3606097
Teaching assistants:
Yu-kang Zhao, Shuai Yang, Jian-da Wu
telephone:3607635
Courses( for download ):
Chapter 1: MsWord-Doc( updated on 18th Sept.)
Chapter 3: MsWord-Doc( updated on 20th Oct.)
Chapter 4: MsWord-Doc( updated on 20th Oct.)
Chapter 5: MsWord-Doc( updated on 05th Dec.)
Chapter 6: MsWord-Doc( updated on 05th Dec.)
Chapter 7: MsWord-Doc( updated on 05th Dec.)
Chapter 8: MsWord-Doc( updated on 05th Dec.)
参考资料(自旋答疑): MsWord-Doc( updated on 16th Dec.)
Chapter 9: MsWord-Doc( updated on 22th Dec.)
Chapter 10: MsWord-Doc( updated on 17th Jan.)
Chapter 11: MsWord-Doc( updated on 17th Jan.)
Class No.: 02214800
Class Schedule:
6,7,8( 1:30pm-4:00pm ) on Monday, room 1102( Note: Using room 4703 on 25th Sept.)
11,12,13( 7:00pm-9:30pm ) on Thursday, room 2221
Instructor:
Prof. Yongde Zhang, Department of Modern Physics, USTC
Telephone: 3606097
Teaching assistants:
Yu-kang Zhao, Shuai Yang, Jian-da Wu
telephone:3607635
Courses( for download ):
Chapter 1: MsWord-Doc( updated on 18th Sept.)
Chapter 3: MsWord-Doc( updated on 20th Oct.)
Chapter 4: MsWord-Doc( updated on 20th Oct.)
Chapter 5: MsWord-Doc( updated on 05th Dec.)
Chapter 6: MsWord-Doc( updated on 05th Dec.)
Chapter 7: MsWord-Doc( updated on 05th Dec.)
Chapter 8: MsWord-Doc( updated on 05th Dec.)
参考资料(自旋答疑): MsWord-Doc( updated on 16th Dec.)
Chapter 9: MsWord-Doc( updated on 22th Dec.)
Chapter 10: MsWord-Doc( updated on 17th Jan.)
Chapter 11: MsWord-Doc( updated on 17th Jan.)
quantum.ustc.edu.cn/old/teaching/qm2/Q5讲稿.DOC
轉為繁體網頁
轉為繁體網頁
量子力学的Dirac符号表示
1, Dirac符号
先从三维空间中对任一矢量的表示方法说起。众所周知,所有同类三维矢量的线性组合构成了三维空间。为了表示这个空间中的任一矢量,可以在三维空间中事先选定一个坐标系(比如某个笛卡儿坐标),于是任一矢量在这个坐标系中便由相应的三个数(是与坐标轴单位矢量的标积,也称为这个矢量在这个坐标系中的分量)来表示。于是,标积、矢积、微分等各种运算便转化为对相应坐标进行数值运算。通常,三维空间任一矢量的表示方法依赖于坐标系(也即基矢)的选取。但是,也可以不选取任何基矢,而只直接就将这些矢量写作为、、......,并利用标积、矢积等等,形式地表示对它们的代数运算或微积分运算
以后,常常将这些完备性条件作为单位算符,插入运算式中适当的地方,转入相应的基矢展式中,以便进行具体的运算。
显然,当坐标算符本征值连续变化取遍全空间时,坐标空间的本征矢是完备的,因为用它们足以展开任何态矢。注意这组基矢的编号是连续的。对动量算符本征矢情况类似注意,量子力学中的状态空间 —— Hilbert空间不完全等同于数学中的Hilbert空间。因为前者还包括了归一化到-函数的矢量,而后者无此类矢量。
No comments:
Post a Comment