Monday, September 29, 2014

引力红移 宇宙红移 接收到的光的频率与发出的光的频率 的比值 正好是 发出时刻的空间部分的(度量结构)变系数 与接收时刻的空间部分的(度量结构)变系数 的比值。

几何直观地介绍广义相对论中的时空以及大爆炸模型 (26) [ ] 于:2012-02-26 08:10:30 复:3659016
几何直观地介绍广义相对论中的时空以及大爆炸模型 (26)宇宙学标准模型
26.0 什么是宇宙学模型
我们想建立一个关于宇宙的在最宏观尺度上的模型。我们希望对全部的时空有一个大体的描述。宇宙学模型不可能是纯理论的,我们必须先有一定的观测基础。但宇宙学模型也不可能是纯观测性的,因为我们的观测能力不足以完全确定它。但我们有爱因斯坦方程,所以我们可以把观测和爱因斯坦方程结合。按广义相对论的要求,我们同时也必须对宇宙间物质分布 有一个大体的描述。
26.1 宇宙学原理
最基本的观测事实是宇宙间的物质分布在各个方向上看 在大尺度下 几乎都是一样的。这叫各向同性。也就是说 对我们而言 宇宙没有一个空间上的特殊方向。F
另一个基本假设是 人类在宇宙间的位置不是特殊的F所以我们假定宇宙有一个整体的坐标时间(这样就有了时空分解),人类也用这个坐标时间, 而且宇宙的时空 在空间部分上的弯曲程度和物质分布 都是均匀的,即不同的 都使用整体坐标时间的 自由观察者的观测大体上是相同的。
宇宙学原理假定:时空在空间部分上的弯曲程度和物质分布都是均匀的,对观察者而言空间各向同性。
26.2 宇宙学原理不是必须的,但是是很有用的
当然宇宙不是严格的空间均匀的 或者对观察者而言各向同性的。但基于前述的宇宙学原理建立的模型已经是一个比较好的近似。如果我们想考虑更精确的模型,我们可以把非均匀的和非各向同性的修正加入进去。
在我的科普中,我只介绍宇宙学标准模型该模型假定宇宙学原理
26.3 宇宙学标准模型中空间部分 内在弯曲程度处处相同
在26.1中讲的宇宙学原理, 从数学上说即是:宇宙时空有整体的坐标时间,在由此给出的时空分解中,每一个时刻的空间部分上 描述空间部分内在弯曲的数学量在空间每一处都是相同的。我们称这样的度量流形为 常曲率流形。
这样一来空间部分的度量结构就极大的简化了。结果只有三种可能。
可能性1:空间部分 具有正的常曲率。 这里“正的”意味着从一点发出的几条测地线 会比平直的空间中的 从一点发出的几条测地线 要更收拢一些。比如内在的几何球面(见(5))就是 正的常曲率流形。但内在的几何球面是二维的, 而我们这里要的是一个3维的流形(空间是3维的)。也许你已经想到了,3维的球面上 可以有正的常曲率的度量结构。所以你可以用(内在的)3维球面作为心目中的例子。在(1)中我定义了嵌入的3维球面,在(4)中我们知道了嵌入的流形自动给出一个内在的流形。 很明显(内在的)3维球面既不是无限延展的,也没有边界。这就是 有的科普中说的“空间有限无边”的宇宙模型的一个例子。
可能性2:空间部分 具有是0的常曲率。 这里常曲率是0 意味着空间是平直的。所以标准的例子是 有标准度量结构的3维欧式空间。但要注意,我们只能推出 空间部分在局部上是 有标准度量结构的3维欧式空间。
可能性3:空间部分 具有负的常曲率。 这里“负的” 意味着从一点发出的几条测地线 会比平直的空间中的 从一点发出的几条测地线 要更散开一些。例子我就不举了(因为以后用不到这种情况)。
到底哪一种可能性描述我们的宇宙呢?这一点由实验观测决定(见下一篇F)。
26.4 宇宙学标准模型中 时空不是静态的
这指的是时空洛仑兹流形的度量结构 所用的变系数 “勾股定理”中的变系数 依赖于坐标时间。更确切地说,在空间部分三个方向用的变系数都是 同一个依赖于时间的变系数。如果该变系数随坐标时间的增大而增大,我们就说宇宙是膨胀的;如果该变系数随坐标时间的增大而减小,我们就说宇宙是收缩的F
26.5 什么是宇宙膨胀
现在我们讲一讲怎么来体验宇宙膨胀。 我们用某一时刻的空间坐标来标记空间位置,然后在空间部分的度量结构 就会告诉我们这两个位置间的空间距离。过了一段(坐标)时间之后,由于计算空间距离时 用的“勾股定理”中的系数 变大了,这一距离也就变大了。一个经典的比方是:你在气球上用墨水点两个点。在吹气球时(气球膨胀),两个点的距离自然要变大。现在把气球换为3维空间部分就可以了。当然你要注意 气球是嵌入在更大的空间里的, 而宇宙的空间部分 已经是所有物理空间, 不嵌入任何其他的物理空间(虽然它嵌入时空)。
如果我们让某观察者A 向一定距离外的观察者B 发光信号(假定他们都在体验坐标时间,即以坐标时间为原时)。由于坐标时间是整体的,发信号时AB都位于某一时刻的空间部分中。B接到信号时 则位于一个较晚一些时刻的空间部分中。这时候 就会出现引力红移现象(也叫宇宙红移):计算表明 接收到的光的频率与发出的光的频率 的比值 正好是 发出时刻的空间部分的(度量结构)变系数 与接收时刻的空间部分的(度量结构)变系数 的比值。宇宙膨胀意味着这个比值小于1。所以接收到的光频率变小了(在光谱上变红了)。F我们还可以把频率变化对时刻变化的依赖性 换算为 频率变化对观察者AB在某时刻的空间距离大小的依赖性。由于空间距离越大,发出与接收的时刻间隔也越大,所以我们不难看出 空间距离越大,红移程度越大
宇宙红移的上述规律被天文观测证实了。 这是支持宇宙膨胀的最有力证据之一。F
我们不妨把这里的红移和史瓦西解的引力红移 比较一下。史瓦西解的时空是静态的, 但空间部分不是均匀弯曲的(径向距离越小,弯曲度愈大);引力红移 是由于不同空间位置处时间方向上的变系数不一样。而宇宙学标准模型中 时空不是静态的,但空间部分却是均匀弯曲的;引力红移 是由于不同时刻处空间方向上的变系数不一样。
26.6 还没有用爱因斯坦方程
迄今为止我们还没有使用爱因斯坦方程来分析宇宙的时空(这样我们能知道的事不多)。下一篇我们将这么做。
待续

No comments:

Post a Comment