Monday, September 29, 2014

angular01 gamma01 newton01 径向跳动 合力在法线方向(径向)的分量产生法向加速度,它描述速度方向改变的快慢。向心加速度反映的是圆周运动在半径方向上速度(即径向即时速度)改变的快慢.向心加速度又叫法向加速度(指向曲线的法线方向的加速度

一轮复习列表_中学学科网

在运动过程中,物体的速度方向是在曲线某点的切线方向上,合力在切线方向的分量产生切向加速度,它描述速度大小改变的快慢;合力在法线方向(径向)的分量产生 ...

  •  

    高中物理竞赛教程:3.5《力和运动的关系》_百度文库

    wenku.baidu.com/view/28ff9e2e58fafab068dc0224
    轉為繁體網頁
    2014年3月7日 - ... 合力在切线方向的分量产生切向加速度,它描述速度大小改变的快慢;合力在法线方向(径向)的分量产生法向加速度,它描述速度方向改变的快慢。

  •  

     


     

     


     

  •  

    高中物理竞赛辅导1.3.5 力和运动的关系- 豆丁网

    2011年6月10日 - ... 合力在切线方向的分量产生切向加速度,它描述速度大小改变的快慢;合力在法线方向(径向)的分量产生法向加速度,它描述速度方向改变的快慢。

     


  •  

     

    径向跳动_百度文库

    wenku.baidu.com/view/2406716aa45177232f60a235.html
    轉為繁體網頁
    圆跳动的测量方向,一般是被测表面的法线方向。 径向圆跳动误差的检测,一般是用两顶尖的连线或V 形块来体现基准轴线,在被测表面的法线方向,使指示器的测头 ...
  • 董玉涛--Edwin

    blog.sina.cn/dpool/blog/u/1226120334
    轉為繁體網頁
    ... 是要素以基准轴线为中心无轴向移动地旋转一周时,在任一测量面内所允许的最大跳动量。圆跳动的测量方向,一般是被测表面的法线方向。 径向圆跳动误差的检测.
  • [力學] 鉛直圓周運動| Kiwi的物理教室

    kiwiphysics.blogspot.com/2014/04/blog-post_27.html
    2014年4月27日 - 我們利用牛頓第二定律的法線方向(徑向)方程式來分析,也就是法線方向的合力,而合力會等於向心力。另外,物體運動過程只受重力作功,繩子的 ...
  • Patent CN1051965A - 引风机- Google Patents

    www.google.com/patents/CN1051965A?cl=zh - 轉為繁體網頁
    1991年6月5日 - 一种适合工业和民用的引风机,结构特点是其叶轮外部没有壳体约束,气流由风筒沿叶轮轴向吸入, 经叶片法线方向径向排到四周空间。其工作原理 ...
  • 综合制度和尺寸标注知识讲义-2--peter.ppt [兼容模式]-5_百度 ...

    220.181.112.102/view/70fe0e06eff9aef8941e06cc.html
    轉為繁體網頁
    2010年11月13日 - ... 特殊规定外,其测量方向是被测面的法线方向。 径向全跳动n 径向全跳动的公差带是半径差为公差值t,且与基准轴线同轴的两圆柱面之间的区域。
  • 径向跳动公差 - 机械工程师

    2009年7月13日 - 圆跳动的测量方向,一般是被测表面的法线方向。径向圆跳动误差的检测,一般是用两 【网址】http://blog.sina.com.cn/s/blog_49151c8e0100d04u.html
  • [DOC]高中物理竞赛教程_第七讲

    www.phsky.net/infomng/.../T20011138130402090621.do...
    轉為繁體網頁
    在运动过程中,物体的速度方向是在曲线某点的切线方向上,合力在切线方向的分量产生切向加速度,它描述速度大小改变的快慢;合力在法线方向(径向)的分量产生 

  •  
    几何直观地介绍广义相对论中的时空以及大爆炸模型 (28) [ ] 于:2012-02-27 22:01:57 复:3659016
    几何直观地介绍广义相对论中的时空以及大爆炸模型 (28)宇宙学标准模型(续2)
    28.1 大爆炸奇点
    宇宙学标准模型的另一个重要后果是 如果我们沿着整体坐标时间往前追溯,则宇宙的空间部分在不断收缩。可以证明,在有限的坐标时间之前,空间部分度量结构的变系数 就降为0了。这意味着所有空间距离都趋向于0。由于宇宙间有物质,物质的密度趋于无穷大。 这就是著名的大爆炸奇点F。广义相对论至此失效F
    28.2 大爆炸奇点是时空的来源
    大爆炸奇点的存在意味着我们不能无限的沿坐标时间往回追溯,因为到了大爆炸奇点处空间就缩为一点了。因此我们可以说宇宙有有限的年龄。问大爆炸奇点之前有什么 没有意义,因为大爆炸奇点是时间起点。F同样的问大爆炸发生在何处没有意义,因为大爆炸奇点处全部物理空间缩为一点了。F
    当然严格说来,上面讲的是纯粹宇宙学标准模型的结论。由于广义相对论失效,在极接近大爆炸奇点时 很可能要由(未确立的)量子引力理论接管,宇宙学标准模型也要相应修改。因此更严肃的回答是:我们不知道 问大爆炸奇点之前有什么 是否有意义。因为我们不知道 大爆炸奇点附近的物理。F
    28.3 一个帮助你理解的玩具模型
    我们考虑一个 有标准度量结构的3维欧氏空间。考虑所有以原点为球心的2维几何球面。取一条以原点为起点延伸至无穷的射线。射线上的每一点 有它到原点的距离。然后我们考虑半径为该距离的2维几何球面。 现在我们用球面的坐标(经纬度)和径向(沿射线的方向)的距离作为我们的坐标系。我们可以写下标准度量结构在这个坐标系的公式。然后我们在径向方向的系数前添上一个负号。
    我们把径向方向(射线方向)作为时间方向(因为它的度量结构的系数是负的)。给定一个时刻,就等于给定一个半径。我们把给定时刻(半径)的2维几何球面 解释为宇宙的空间部分。这就是我的玩具模型原点是大爆炸奇点。整个宇宙时空, 作为流形,就是3维欧氏空间。 它是由空间部分(2维几何球面)沿着时间方向(径向)演化而成的。由于随着时间(半径)的增大,几何球面上的距离在增大,所以宇宙在膨胀。宇宙在某一时刻的空间部分(2维几何球面)有限无边
    在这模型中,时间方向无(未来)终点,但是有起始。起点是原点,即大爆炸奇点。问大爆炸奇点 之前是什么没有意义,因为大爆炸奇点处时刻(半径)是0,而我们没有小于0的时刻(半径)。问大爆炸奇点 发生在何处也没意义, 因为大爆炸奇点不是位于某个物理空间里的,大爆炸奇点处2维几何球面(全部物理空间)缩为一点(半径为0的球面就是原点)。F
    当然现实的模型和玩具模型有区别。第一 这里的玩具模型空间部分只有2维,现实模型中应换为3维;第二 玩具模型空间部分 具有正的常曲率,而现实模型中是(极接近于)平直的;第三 现实模型中有物质和能量。
    28.4 暴胀模型
    暴胀模型说的是在很接近于大爆炸奇点但又不是特别特别接近(以至于要直接动用基本的量子引力理论)时,宇宙学标准模型要作重要调整(在稍稍离开大爆炸奇点以后就不需要调整)。调整的结论是由于某种来自于待定的基本理论的机制,宇宙在极短时间内(若干亿。。。亿分之一秒)空间暴胀了很多倍(若干亿。。。亿倍)。暴胀模型可以解决一些宇宙学标准模型中的棘手问题(但不包括最基本的 奇点是什么的问题和暗能量/宇宙常数是什么的问题)。由于它的一些预言受到了一些对宇宙不均匀性的精细观测的支持,不少宇宙学家都支持暴胀模型。 不过它的地位还没有宇宙学标准模型稳固。
    待续


    几何直观地介绍广义相对论中的时空以及大爆炸模型 (29) [ ] 于:2012-02-28 09:15:53 复:3659016
    几何直观地介绍广义相对论中的时空以及大爆炸模型 (29)奇点
    29.1 奇点不可避免
    大爆炸奇点和前面讲过的黑洞奇点 都是我们不了解的东西。这会不会是由于我们的模型过于理想化造成的? 比如如果我们不假设宇宙空间部分是均匀的 是不是就有可能避免奇点?F
    不幸的是 人们证明了一系列“奇点定理”。它们说 在很一般的情况下(不是所有情况,但适用于宇宙学模型和大质量天体坍缩) 奇点一定会出现。这里的奇点出现,指的是时空中存在 不完整的类时或类光测地线。也即是说 有的观察者 哪怕从理论上讲 也只能有 有限的原时。 比如在黑洞的情况,进入史瓦西黑洞视界的观察者 在有限原时内到达黑洞奇点。在宇宙学标准模型的情况,往前回溯的一切测地线 在有限长度内 抵达大爆炸奇点。当然我要指出大爆炸奇点和黑洞奇点 是不同类型的。大爆炸奇点真的就是一个点,而黑洞奇点 是时空中一条线(史瓦西黑洞时空中 球心的世界线)。
    对于一般的奇点情况,虽然我们没有大爆炸奇点和黑洞奇点 这样的较具体的理解,我们也知道大事不好。类时或类光测地线的不完整 意味着有的观察者(向未来或向过去)存在着存在着就没了。而这个“就没了”不是说观察者无故消失在某时间长河中和虚空中某处,而是说他存在着存在着 时空就没了F。我们怎么能导出这么匪夷所思的结论呢(当然从纯几何的角度看倒没什么匪夷所思的,比如28.3就不是什么古怪的几何)?用的是反证法。对于很多爱因斯坦方程的解(包括最重要的天体坍缩和宇宙模型)来说 如果不出这种怪事,数学上就会自相矛盾。这就是奇点定理的证明思路。当然物理学家并不真的认为情况就是这样的,一般认为只有量子引力才能处理奇点。广义相对论在奇点失效,可以说广义相对论自己预言了自己的失败之处F不过也别高兴得太早,很多人认为在量子引力中,接近奇点到一定程度,时空这一概念就不再适用了。所以也许未来的学者可以另一个意义上阐明 存在着存在着时空就没了。
    奇点定理告诉我们,在宇宙学和大质量天体演化的研究中我们无法回避奇点大爆炸奇点问题 是宇宙学的又一重大基本问题F
    29.2 奇点和初值问题
    在(25)中我们讲过爱因斯坦方程的初值问题告诉我们 柯西超曲面 完全决定了 由它演化出来的全局双曲的时空。这就是广义相对论在一般时空中的预言能力的来源。而29.1 又说很多时候这种全局双曲的时空是有奇点的(即测地线不完整)。 这样看来唯一的麻烦似乎就是 奇点处广义相对论失效。只要我们不考虑奇点附近的时空 应该就没事。
    但其实我们可能面临糟糕得多的局面。奇点的存在可能会破坏广义相对论在哪怕远离奇点的地方的 预言能力。物理上说,奇点可能暴露于观察者,由于我们不知奇点为何物 也就不知暴露于观察者的奇点会对观察者产生何种影响。由此我们就失去了预言能力。数学上讲,全局双曲的时空 确实由柯西超曲面完全决定,但全局双曲的时空 可能只是一个更大时空的一部分。因此“真正的”时空可能存在着“超越全局双曲” 从而 超越理论预言能力的部分F
    为了对付上述问题,物理学家提出了著名的 宇宙监督猜想。以黑洞时空为例,黑洞奇点虽坏,但他被事件视界完全封住了。远处的观察者 无法受事件视界之内发生的事情影响。因此事件视界之外我们有预言能力。宇宙监督猜想的一部分就是猜想 在类似天体坍缩这类的情况时,如果出现了奇点,就会出现事件视界隔离它。这也意味着黑洞的存在应该是普遍的现象F
    那么对于没有事件视界隔离的大爆炸奇点,又会怎样呢?其实全宇宙的观察者都是暴露在大爆炸奇点下的,因为全宇宙都是从大爆炸奇点来的。但是如果我们选择任意时刻的宇宙的空间部分 作为爱因斯坦方程初值问题的出发处, 那么除了大爆炸奇点之外的全部时空(按宇宙学标准模型)就都被决定了(即我们得到全局双曲性)。因为时空不能“超越”大爆炸奇点(因为遇上无穷大了) 扩张为更大的时空,我们就在宇宙学标准模型中 保有除了大爆炸奇点之外的 时空预言能力F宇宙监督猜想的另一部分就是猜想 爱因斯坦方程初值问题决定的全局双曲时空 不能扩张为更大的时空。这里的不平凡之处在于 奇点定理只告诉我们有不完整的测地线 而没说会遇上无穷大,因此我们不清楚是不是能够“超越奇点” 扩张时空。当然对宇宙学标准模型的大爆炸奇点 和 史瓦西黑洞奇点而言 我们确知有无穷大弯曲度出现(从而不能“超越奇点” 扩张时空)。所以宇宙监督猜想这时是成立的。
    值得指出有一些极特殊的例子使得宇宙监督猜想不成立。但它们被认为是“不够物理的”,因为它们不具有小扰动下的稳定性(从而然以想象如何能真的实现)F。我们只要求 宇宙监督猜想对一般的有奇点时空成立。
    宇宙监督猜想 不告诉我们奇点是什么,但他把奇点的危害降到了最小。宇宙监督猜想 可能是纯广义相对论中最重要的未解决问题
    待续

    No comments:

    Post a Comment