相干态是个很神奇的量子态,粒子数不定,但具有最小的位相涨落。很多玻色子凝聚相都处于相干态,比如激光
BCS之美(二):B, C, S这伙人的故事
|||
本来不想干这种吃力不讨好的事,看了会仟老师的超导博文,感到意犹未尽,再做点补充。
话说老B (就是巴丁,比另两个老了10几20岁),可不是个等闲之辈。
他多次跳槽,40年代末正好是贝尔电话公司的电子器件方面的研究人员,他和同事一起发明了半导体三极管。
他因此和几个人分享了1956年的诺贝尔物理学奖,够牛B了吧。
但是,他还嫌不够。
由于他早年具有固体理论方面的研究基础,他了解了小C(库伯)的配对思想,突然对超导发生了兴趣。
他就召集了当时小有成就的小C 和聪明的小S(西里夫)来研究超导理论。
老B应该只是做点指手画脚的工作,小C和小S 是具体的理论创造者。
上一讲中已经讲到小C提出的电子配对思想,也就是费米面上两个电子由于微弱的吸引力而配成对。
这是个很好的出发点,老B 就死死地盯住这个核心,让小C小S 寻找系统的最小能量解。
小S 鬼使神差地想到,超导基态应该是个电子对形成的相干态。这大概就是灵感。
相干态是个很神奇的量子态,粒子数不定,但具有最小的位相涨落。很多玻色子凝聚相都处于相干态,比如激光。
电子是费米子,想处于相干态就需要做点手脚。
小S 发现,按照小C的主意把电子全都配成对对儿,就可以写出一个相干态来。
大量的非超导电子集体就像一个海洋,时而蹦几个出来成为超导电子或者反回来,形成了粒子数不固定的相干态。
小S以这个相干态为基态,对能量求极小值,就得到了一个漂亮的超导解。
另一条路是对吸引相互作用做平均场近似。这也是不得已的办法,谁叫人类至今也没办法求解4条腿(4个产生湮灭算符)的多体问题呢。
很神奇的是,这样近似之后直接求解,竟然跟小S 的相干态解完全一样。
于是,BCS的超导解就这样定下来了。
这个BCS超导解漂亮在哪里? 首先,刚才讲的相干态解和平均场近似解惊人一致,条条道路通罗马,不能全当是巧合。
第二,这样一个配对机制,有一个最小的激发能。小于这个激发能,不能有激发,电阻也就不能存在。没有哪个其他的模型能如此完美解释超导性。这个解释跟朗道的超流二级相变理论有点相似。
第三,这个BCS模型还同时解释了超导体的完全抗磁性。磁场进不去超导体。
第四,居然有人用BCS模型证明出了超导的金兹堡-朗道二级相变理论的序参量。
第五,杨振宁也来凑了个热闹,发现BCS超导态具有非对角长程序。这个东西当时惊爆了好些人的眼球,讲的是一对电子和很远(无穷远)的一对电子有关联。它后来成了一个超导的判据。
第六,就算BCS模型不适用于高温超导,但BCS的配对思想仍然几乎是所有高温超导模型的出发点。
所以,BCS你不服不行。BCS的确有丑的一面,没有丑就没有美。且听下回分解。
No comments:
Post a Comment