Saturday, September 6, 2014

vampireking magnitization01 因为电磁势不是物理可测量,而E和B才是。对电磁势作变换(规范变换),物理量E和B保持不变。因此,用电磁势语言处理量子问题的时候,尤其是在量子场论中,要么消去额外的规范自由度,要么证明所研究的物理观测量是规范无关的




张永德作者的文章《电磁AB 效应及有关问题》



几点讨论


和势的问


说过, 电磁场的场强都是局域


与此同时, 电磁场的是整

量由上述效应,

经知道不是基本, 单靠它们不能

的微观电磁现,


或者说,

信息不足, ,


, 因此们虽然能描微观电磁现,


却提供了过是说, ,


也包括了物理


, , 既能述全有关现, 很少提供


多余非物息更准确些说, 电磁学正是






不可积相因子




这里, 磁场强这个等式可以

来检验的分式并


表达式相个量子化的


, 的力可以直接由

力公经一次量子而得到


物理一, 在方右边的力的达式,

的力只和当地的条件有, 含物理


当地数值, 这说明不存在超距作用力
http://spe.sysu.edu.cn/spe/electrodynamics/web/pdf/ext/AB1.pdf





, 只当空间, 它的波函

才完原旋将出








磁场定矢势之旋度,散度完全自由之。故矢势散度为常数,为任意标量场


vampireking 2013-09-20 19:13:22 1) 微分形式的方程可以写成积分形式,反之未必。因为微分形式是某一时空点的场满足的方程,如果场的相互作用,也就是说某个空间点的取值与其他空间点相关,那么似乎方程无法写成微分形式。(未仔细查对教材)
2) 用E和B表示的麦克斯韦方程不满足协变性,也就是说在不同的参考系描述同一个物理系统的方程形式不一样。为了满足协变性,人们引入了思维矢量电磁势A,E和B分别是电磁势A的导数。用电磁势语言写下的方程,满足协变性。因此,对于麦克斯韦方程,电磁势是更加基本的量。
但是,因为电磁势不是物理可测量,而E和B才是。对电磁势作变换(规范变换),物理量E和B保持不变。因此,用电磁势语言处理量子问题的时候,尤其是在量子场论中,要么消去额外的规范自由度,要么证明所研究的物理观测量是规范无关的。
3) 根据波粒二象性,单个电子=一团物质波波包,当然波包是自相干涉的。






于电磁场的场些关于


分量, 而是些表征着电磁场局域性

量效应不能用电磁场的局域性质来描


就意味着它可能源于磁场的空间整体性质


这是效应从一开始我们示的
测量过程是仪器和粒子相互作用的过程,粒子当然满足薛定谔方程,只不过哈密顿算子现在应该包括仪器与粒子的相互作用能。
测量结果的不确定,是波函数的几率解释带来的。就像你抛一个硬币,得到向上和向下的结果是不能准确预言的。
不确定关系指的是两外一回事。如果两个算子不对易,那么对某个态测量他们的值,测量结果的涨落存在反相关: DA * DB >= 1.


于电磁场的场些关于


分量, 而是些表征着电磁场局域性

量效应不能用电磁场的局域性质来描


就意味着它可能源于磁场的空间整体性质


这是效应从一开始我们示的






http://spe.sysu.edu.cn/spe/electrodynamics/web/pdf/ext/AB1.pdf


next up previous contents Next: The Lorentz Gauge Up: Potentials Previous: Potentials   Contents


Gauge Transformations

Now comes the tricky part. The following is very important to understand, because it is a common feature to nearly all differential formulations of any sort of potential-based field theory, quantum or classical. We know from our extensive study of elementary physics that there must be some freedom in the choice of $\phi$ and $\mbox{\boldmath$A$}$. The fields are physical and can be ``directly'' measured, we know that they are unique and cannot change. However, they are both defined in terms of derivatives of the potentials, so there is an infinite family of possible potentials that will all lead to the same fields. The trivial example of this, familiar from kiddie physics, is that the electrostatic potential is only defined with an arbitrary additive constant. No physics can depend on the choice of this constant, but some choices make problems more easily solvable than others. If you like, experimental physics depends on potential differences, not the absolute magnitude of the potential. So it is now in grown-up electrodynamics, but we have to learn a new term. This freedom to add a constant potential is called gauge freedom and the different potentials one can obtain that lead to the same physical field are generated by means of a gauge transformation. A gauge transformation can be broadly defined as any formal, systematic transformation of the potentials that leaves the fields invariant (although in quantum theory it can be perhaps a bit more subtle than that because of the additional degree of freedom represented by the quantum phase). As was often the case in elementary physics were we freely moved around the origin of our coordinate system (a gauge transformation, we now recognize) or decided to evaluate our potential (differences) from the inner shell of a spherical capacitor (another choice of gauge) we will choose a gauge in electrodynamics to make the solution to a problem as easy as possible or to build a solution with some desired characteristics that can be enforced by a ``gauge condition'' - a constraint on the final potentials obtained that one can show is within the range of possibilities permitted by gauge transformations. However, there's a price to pay. Gauge freedom in non-elemetary physics is a wee bit broader than ``just'' adding a constant, because gradients, divergences and curls in multivariate calculus are not simple derivatives. Consider $\mbox{\boldmath$B$}= \mbox{\boldmath$\nabla$}\times \mbox{\boldmath$A$}$. $\mbox{\boldmath$B$}$ must be unique, but many $\mbox{\boldmath$A$}$'s exist that correspond to any given $\mbox{\boldmath$B$}$. Suppose we have one such $\mbox{\boldmath$A$}$. We can obviously make a new $\mbox{\boldmath$A$}'$ that has the same curl by adding the gradient of any scalar function $\Lambda$. That is:
\begin{displaymath}
\mbox{\boldmath$B$}= \mbox{\boldmath$\nabla$}\times \mbox{\...
...Lambda) = \mbox{\boldmath$\nabla$}\times \mbox{\boldmath$A$}'
\end{displaymath}(8.36)

We see that:
\begin{displaymath}
\mbox{\boldmath$A$}' = \mbox{\boldmath$A$}+ \mbox{\boldmath$\nabla$}\Lambda
\end{displaymath}(8.37)

is a gauge transformation of the vector potential that leaves the field invariant.
Note that it probably isn't true that $\Lambda$ can be any scalar function - if this were a math class I'd add caveats about it being nonsingular, smoothly differentiable at least one time, and so on. Even if a physics class I might say a word or two about it, so I just did. The point being that before you propose a $\Lambda$ that isn't, you at least need to think about this sort of thing. However, great physicists (like Dirac) have subtracted out irrelevant infinities from potentials in the past and gotten away with it (he invented ``mass renormalization'' - basically a gauge transformation - when trying to derive a radiation reaction theory), so don't be too closed minded about this either. It is also worth noting that this only shows that this is a possible gauge transformation of $\mbox{\boldmath$A$}$, not that it is sufficiently general to encompass all possible gauge transformations of $\mbox{\boldmath$A$}$. There may well be tensor differential forms of higher rank that cannot be reduced to being a ``gradient of a scalar function'' that still preserve $\mbox{\boldmath$B$}$. However, we won't have the algebraic tools to think about this at least until we reformulate MEs in relativity theory and learn that $\mbox{\boldmath$E$}$ and $\mbox{\boldmath$B$}$ are not, in fact, vectors! They are components of a second rank tensor, where both $\phi$ and $\mbox{\boldmath$A$}$ combine to form a first rank tensor (vector) in four dimensions. This is quite startling for students to learn, as it means that there are many quantities that they might have thought are vectors that are not, in fact, vectors. And it matters - the tensor character of a physical quantity is closely related to the way it transforms when we e.g. change the underlying coordinate system. Don't worry about this quite yet, but it is something for us to think deeply about later. Of course, if we change $\mbox{\boldmath$A$}$ in arbitrary ways, $\mbox{\boldmath$E$}$ will change as well! Suppose we have an $\mbox{\boldmath$A$}$ and $\phi$ that leads to some particular $\mbox{\boldmath$E$}$ combination:
\begin{displaymath}
\mbox{\boldmath$E$}= -\mbox{\boldmath$\nabla$}\phi - \frac{\partial \mbox{\boldmath$A$}}{\partial t}
\end{displaymath}(8.38)

If we transform $\mbox{\boldmath$A$}$ to $\mbox{\boldmath$A$}'$ by means of a gauge transformation (so $\mbox{\boldmath$B$}$ is preserved), we (in general) will still get a different $\mbox{\boldmath$E$}'$:
$\displaystyle \mbox{\boldmath$E$}'$$\textstyle =$$\displaystyle -\mbox{\boldmath$\nabla$}\phi - \frac{\partial \mbox{\boldmath$A$}'}{\partial t}$ 
 $\textstyle =$$\displaystyle -\mbox{\boldmath$\nabla$}\phi - \frac{\partial }{\partial t}(\mbox{\boldmath$A$}+ \mbox{\boldmath$\nabla$}\Lambda)$ 
 $\textstyle =$$\displaystyle \mbox{\boldmath$E$}- \frac{\partial \mbox{\boldmath$\nabla$}\Lambda}{\partial t} \ne \mbox{\boldmath$E$}$(8.39)



as there is no reason to expect the gauge term to vanish. This is baaaaad. We want to get the same $\mbox{\boldmath$E$}$.
To accomplish this, as we shift $\mbox{\boldmath$A$}$ to $\mbox{\boldmath$A$}'$ we must also shift $\phi$ to $\phi'$. If we substitute an unknown $\phi'$ into the expression for $\mbox{\boldmath$E$}'$ we get:
$\displaystyle \mbox{\boldmath$E$}'$$\textstyle =$$\displaystyle -\mbox{\boldmath$\nabla$}\phi' - \frac{\partial }{\partial t}(\mbox{\boldmath$A$}+ \mbox{\boldmath$\nabla$}\Lambda)$ 
$\displaystyle \mbox{\boldmath$E$}'$$\textstyle =$$\displaystyle -\mbox{\boldmath$\nabla$}\phi' - \frac{\partial \mbox{\boldmath$A$}}{\partial t} -
\mbox{\boldmath$\nabla$}\frac{\partial \Lambda}{\partial t}$(8.40)



We see that in order to make $\mbox{\boldmath$E$}' = \mbox{\boldmath$E$}$ (so it doesn't vary with the gauge transformation) we have to subtract a compensating piece to $\phi$ to form $\phi'$:
\begin{displaymath}
\phi' = \phi - \frac{\partial \Lambda}{\partial t}
\end{displaymath}(8.41)

so that:
$\displaystyle \mbox{\boldmath$E$}'$$\textstyle =$$\displaystyle -\mbox{\boldmath$\nabla$}\phi' - \frac{\partial \mbox{\boldmath$A...
...$A$}}{\partial t} -
\mbox{\boldmath$\nabla$}\frac{\partial \Lambda}{\partial t}$ 
 $\textstyle =$$\displaystyle -\mbox{\boldmath$\nabla$}\phi - \frac{\partial \mbox{\boldmath$A$}}{\partial t} = \mbox{\boldmath$E$}$(8.42)



In summary, we see that a fairly general gauge transformation that preserves both $\mbox{\boldmath$E$}$ and $\mbox{\boldmath$B$}$ is the following pair of simultaneous transformations of $\phi$ and $\mbox{\boldmath$A$}$. Given an arbitrary (but well-behaved) scalar function $\Lambda$:
$\displaystyle \phi'$$\textstyle =$$\displaystyle \phi - \frac{\partial \Lambda}{\partial t}$(8.43)
$\displaystyle \mbox{\boldmath$A$}'$$\textstyle =$$\displaystyle \mbox{\boldmath$A$}+ \mbox{\boldmath$\nabla$}\Lambda$(8.44)



will leave the derived fields invariant.
As noted at the beginning, we'd like to be able to use this gauge freedom in the potentials to choose potentials that are easy to evaluate or that have some desired formal property. There are two choices for gauge that are very common in electrodynamics, and you should be familiar with both of them.






张永德作者的文章《电磁AB 效应及有关问题》

该文比较全面的介绍了 AB 效应的原理。量子力学的AB效应证明电磁势A

ϕ有着直接的物理观测效应,同时电磁场的场强已不能有效地描述带电粒子的




量子行为。


余招贤老师推荐

第卷


第期





大学








电磁效应及有关


中国科技大学永德


了电碌效应,


地论与之有关的




力学, 述电磁场和带粒子运

动的方程和力公,

场强表达的标势的引人

学上的方便, 有规范

下不的场才有物理在量力学


, 据最小电磁合原理, 电磁场虽然以


标势方程, 磁场

规范变换导致波个相因子即


在规换下不, 因此人





·


们一认为量子力学, 也如同经力学


, 电磁场的场强具有可观测的物理

效应,


, 量子力学, 磁场的势有的可观






测的物理效应


效应


了一

异量子效应, 明在磁过程中,

磁场不能有效地述带粒子的量子

这种效应

于电磁场的场些关于


分量, 而是些表征着电磁场局域性

量效应不能用电磁场的局域性质来描


就意味着它可能源于磁场的空间整体性质


这是效应从一开始我们示的可


图的理想实验说明效应在电子双

实验的缝屏后面两缝之间紧靠缝屏的地放置

线,


线管产磁力

线, 称为磁理论分析表明, 相对于无线


或没通电, 干涉花样在包络不变情


下发生极值位置移动电流若,


花样也反现对此作论分


双缝效应实验示


于缝是相干分, 不失般性,


可以设缝, 电子波有相同的相位,


而将此实验简化为图所示



访







,


, ·


硕二甲, ,



,







一一











图双应等效图


的合振幅





通电后


,


访, , ,


它改两束电子的相, 而改了双

涉的强度分布这个内部相因子还可改写

, ,


为求此方程,


,


其中为待定函,

方程, 注意所满足,


矛月


, , ,


这里所圈住的磁通由


个相因子不改变单缝,


所以在条动时, 诸条纹极值的包仍不


为实验所证





电效应


和也预言电通量的

效应, 设不存在电磁场标, 系的哈


· ,


顿量为


访苦兴







若要此方程成立, 要求




即‘

积分便得不计, 它在下面






一时除去







总之可得


, · , ,,


标势存在




应的方程解为


, , ,


这很容易用直接计算来


如图的理想实验来检验电的

效应, 为两屏蔽金属元, 电子


处被相干分, 处相干叠加采用时


开关将分成个个波包, 线








, 这里前面的相因的区域

与路有关, 因而是不积的

区域里, 它才与路无关这也说明, 磁场

物理效应毕竟实在,


数学变换将转化成相因子的

于是, 电情况下, 的合振幅为


, , ,


, ,


,


· ,


大括号外的相因新增的外相因子, 它在


这里没有可测的理效应, 可以略去, 大括


的相因子为增的内相因子,


图电效应实验示


波包线电子波长

这里符号要求子波足够单色,


以便分析时延机制来控, 使


得波包进人时, 的电势为, 进人后,


时间,

No comments:

Post a Comment