用一个平面去截一个球,截面是圆面
学科:数学
| |
教学内容:球
|
【基础知识精讲】
1.球的概念
半圆以它的直径为旋转轴,旋转所成的曲面叫做球面,球面所围成的几何体叫做球体,简称球.半圆的圆心叫做球心,连结球心和球面上任意一点的线段叫做球的半径.连结球面上两点并且经过球心的线段叫做球的直径.
如图的球中,O是球心,线段OC是半径,线段AB是直径,球一般用表示它的球心的字母来表示,上图记为球O.
球面可以看作空间内到定点(球心)的距离等于定长的点的集合,球则可以看作空间内到定点(球心)的距离小于或等于定长(半径)的点的集合.
2.球的性质
用一个平面去截一个球,截面是圆面,其截面有如下性质:
(1)球心和截面圆心的连线垂直于截面.
(2)球心到截面的距离d与球的半径R及截面的半径r,有下面的关系:
r=
球面被经过球心的平面截得的圆叫做大圆,被不经过球心的截面截得的圆叫做小圆.
(3)经过球面上不是同一条直径的两端点的两个点,可以且只可以作一个大圆.
(4)同一个球的大圆相等.
(5)球的大圆平分这个球.
(6)球的任意两个大圆相互平分.
画球时,一般画一个大圆,与一个辅助椭圆就足够了.
3.经度、纬度和球面距
北极、南极的连线称为地轴.英国的格林威治天文台与地轴形成一个大圆,以地轴为直径,天文台所在半圆弧称为O°经线,也称为本初子午线.
经线指的是某点与地轴形成半圆、圆弧,赤道面指的是垂直于地轴.某地点的经度指的是经过这点的经线与地轴确定的半平面与O°经线与地轴确定的半平面所成二面角的度数,实质是二面角.
某地点的纬度就是经过这点的球半径与赤道面所成角的度数,本质是线面角.
注意:东经180°与0°经线重合,如图1.
球面距指的是经过两点的大圆的劣孤长,也是球面上经过这两点的最短距离.
如图2所示:NS为地轴,P所在经线为,设P点所在经线为0°经线,B所在经线为东径n度(n=∠AOB),P在北纬m度(m=40A),要确定P在地球上的位置,必须知道P的经度与纬度.
4.球的面积和体积公式.
定理:球面面积等于它的大圆面积的4倍,S球面=4πR2
定理:如果球的半径为R,那么它的体积是V球=πR3.
【重点难点解析】
多面体:旋转体与球的相切和相接问题,常成为高考的重点和热点,难点是球半径与多面体、旋转体的几何量的关系.
例1 已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且相距是1,那么这个球的半径是( )
A.4 B.3 C.2 D.5
解: 如图,设球的半径是r,则πBD2=5π,πAC2=8π,
∴BD2=5,AC2=8.又AB=1,设OA=x.
∴x2+8=r2,(x+1)2+5=r2.
解之,得r=3
故选B.
例2 在桌面上有三个球两两相切,且半径都为1,在桌面与三球间放置一个小球,使它与三个球相切.求此小球半径.
解: 如图,球O为放置在桌面上与已知三球相切的半径为r的小球,过O作O1O2O3平面的垂线,垂足为H,它一定是ΔO1O2O3的中心,连接O1H,O1O,在RtΔO1OH中,O1H=,OH=1-r,OO1=1+r,∴OO12=O1H2+OH2,即(1+r)2=()2+(1-r)2,解得r=.
例3 地球半径为R,在北纬45°圈上有A、B两点,它们的经度差为,求球面上A、B两点间球面距离.
分析 本题关键是求出∠AOB的大小,(如图1)现在我们将这个球的截面问题转化为较为熟悉的长方体问题.如图2,以O1O,O1A,O1B为三条相互垂直的棱,可构造一个长方体,问题转化为长方体截面ABO内求∠BOA的问题.
解: 如图2,∵∠O1OA==∠O1OB,OA=OB=R,∴OO1=O1A=O1B=R ∴AB2=O1A2+O1B2=R, ∴ΔAOB为等边Δ, ∴∠AOB=,A、B间的球面距离为R.
例4 两面都是凸形的镜中,它的面都是球冠形,球半径分别为10cm和17cm,两球心间的距离为21cm,求此镜面的表面积和体积.
解: 轴截面如图,设O2C=x,则CO1=21-x,∵AB⊥O1O2 ∴AO22-O2C2=AO12-CO12,即102-x2=172-(21-x)2,解得x=6,CO1=15,又设左边球缺的高为h1,右边的球缺高为h2,则h1=17-15=2,h2=10-6=4,∴S表=2π(17·2+10·4)=148π(cm)2,V=π[22(3·10-2)+42(3·17-4)]=288π(cm3).
例5 正三棱锥的底面边长是2cm,侧棱与底面成60°角,求它的外接球的表面积.
解: 如图,PD是三棱锥的高,则D是ΔABC的中心,延长PD交球于E,则PE就是外接球的直径,AD=AB=,∠PAD=60°,∴PD=AD·tan60°=2,PA=,而AP⊥AE,∴PA2=PD·PE==,R=,∴S球=π(cm)2.
例6 求证:球的外切正四面体的高是球的直径的2倍.
证明: 设球的半径为R,正四面体的高为h,侧面积为S,则有VA—BCD=VO—ABC+VO—ABD+VO—BCD,如图,即Sh=4×SR,∴h=4R.
【难题巧解点拨】
例1 地球半径为R,A、B两地都在北纬45°线上,且A、B的球面距离为,求A、B两地经度的差.
分析:如图,O为球心,O1为北纬45°小圆的圆心,知A、B的球面距离,就可求得∠AOB的弧度数,进而求得线段AB的长,在ΔAO1B中,∠AO1B的大小就是A、B两地的经度差.
解: 设O1是北纬45°圆的中心,
∵A、B都在此圆上,
∴O1A=O1B=R.
∵A、B的球面距离为,
∴∠AOB===,ΔAOB为等边三角形.
AB=R,在ΔAO1B中,
∵O1A2+O1B2=R2+R2=R2=AB2,
∴∠AO1B=90°.
∴A、B两地的经度差是90°.
评析:注意搞清纬度和经度的问题,球面距离三步骤的运用是非常重要的问题.
例2 已知圆锥的母线长为l,母线对圆锥底面的倾角为θ,在这个圆锥内有一内切球,球内又有一个内接的正方体,求这个内接正方体的体积.
解 设球半径为R,以内接正方体对角面为轴截面,如图.连接OA,∠OAD=,R=OD=AD·tan,VA=l,AD=lcosθ,∴R=lcosθtan,又设正方体棱长为x,则3x2=EG2=4R2,x=R.∴V正方体=(lcosθtan)3.
例3 如图,过半径为R的球面上一点P作三条两两垂直的弦PA、PB、PC,(1)求证:PA2+PB2+PC2为定值;(2)求三棱锥P—ABC的体积的最大值.
分析:先选其中两条弦PA、PB,设其确定的平面截球得⊙O1,AB是⊙O1的直径,连PO1并延长交⊙O1于D,PADB是矩形,PD2=AB2=PA2+PB2,然后只要证得PC和PD确定是大圆就可以了.
解: (1)设过PA、PB的平面截球得⊙O1,∵PA⊥PB,
∴AB是⊙O1的直径,连PO1并延长交⊙O1于D,则PADB是矩形,PD2=PA2+PB2.
设O为球心,则OO1⊥平面⊙O1,
∵PC⊥⊙O1平面,
∴OO1∥PC,因此过PC、PD的平面经过球心O,截球得大圆,又PC⊥PD.
∴CD是球的直径.
故 PA2+PB2+PC2=PD2+PC2=CD2=4R2定值.
(2)设PA、PB、PC的长分别为x、y、z,则三棱锥P—ABC的体积V=xyz,
V2=x2y2z2≤()3=·=R6.
∴V≤R3.
即 V最大=R3.
评析:定值问题可用特殊情况先“探求”,如本题(1)若先考虑PAB是大圆,探求得定值4R2可为(1)的证明指明方向.
球面上任一点对球的直径所张的角等于90°,这应记作很重要的性质.
例4 求棱长为a的正四面体的外接球和内切球的半径.
解 如图,作AH⊥底面BCD于H,则AH=a,设内切球的球心为O,半径为r,O点与A、B、C、D相连,得四个锥体,设底面为S,则每个侧面积为S,有4··Sr=S·AH,∴r=AH=a,设外接球心为O,半径R,过A点作球的半径交底面ΔBCD于H,则H为ΔBCD的外心,求得BH=a,AH=a,由相交弦定理得a×(2R-a)=(a)2.
解得R=a.
【课本难题解答】
1.求证:球的任意两个大圆互相平分.
证明:因为任意两个大圆都过球心O,所以它们必交于过球心的直径,这条直径也是两个大圆的公共直径,所以任意两个大圆互相平分.
2.在球心的同一侧有相距9cm的两个平行截面,它们的面积各为49πcm2和400πcm2.求球的表面积.
解: 如图,设球的半径为R,
∵πO2B2=49π, ∴O2B=7
同理 O1A=20
设OO1=xcm,则OO2=(x+9)cm.
在RtΔOO1A中,可得R2=x2+202
在RtΔOO2B中,可得R2=72+(x+9)2
∴x2+202=72+(x+9)2
解方程得 x=15cm
R2=x2+202=252
∴S球=4π·OA2=2500π(cm2)
【命题趋势分析】
纵观近几年高考题,关于球的应用题基本上出现在选择题、填空题的位置上,且难度不大,同时实际背景材料并不复杂,主要考查三个方面:①算表面积和体积;②求半径;③求球面距.
【典型热点考题】
例1 球面上有3个点,其中任意两点的球面距离都等于大圆周长的,经过3个点的小圆的周长为4π,那么这个球的半径为( )
A.4 B.2 C.2 D.
解: 设球半径为R,小圆半径为r,则2πr=4π,∴r=2.如图,设三点A、B、C,O为球心,∠AOB=∠BOC=∠COA=,又∵OA=OB
∴ΔAOB是等边三角形
同理,ΔBOC、ΔCOA都是等边三角形,得ΔABC为等边三角形.
边长等于球半径R,r为ΔABC的外接圆半径.
r=AB=R
R=r=2
∴应选B.
例2 已知球面上A、B、C三点的截面和球心的距离都是球半径的一半,且AB=BC=CA=2,则球表面积是( )
A.π B.π C.4π D.π
解: 如图,过ABC三点的截面圆的圆心是O′,球心是O,连结AO′、OO′,则OO′⊥ AO′.ΔABC中,AB=BC=CA=2,故ΔABC为正三角形.
∴AO′=×2=
设球半径为R,则OA=R,OO′=
在RtΔOAO′中,OA2=O′O2+O′A2,即R2=+()2
∴R=
∴球面面积为4πR2=π
∴应选A.
说明 因为R=OA>O′A>AB=1,所以球面积S=4πR2>4π.从而选A.
例3 长方体的一个顶点上的三条棱分别是3、4、5,且它的八个顶点都在同一球面上,这个球的表面积是( )
A.20π B.25π C.50π D.200π
解: 正方体的对角线为l,球的半径为R,则l=2R.
得:l2=4R2=32+42+52=50
从而 S球=4πR2=50π
∴应选C.
例4 在球面上有四个点P、A、B、C.如果PA、PB、PC两两互相垂直,且PA=PB=PC=a,那么这个球的表面积是 .
解: 由已知可得PA、PB、PC实际上就是球内接正方体中交于一点的三条棱,正方体的对角线长就是球的直径,连结过点C的一条对角线CD,则CD过球心O,对角线CD=a.
∴S球表面积=4π·(a)2=3πa2.
例5 圆柱形容器的内壁底半径为5cm,两个直径为5cm的玻璃小球都浸没于容器的水中,若取出这两个小球,则容器内的水面将下降 cm.
分析:球的体积等于它在容器中排开水的体积.
解: 设取出小球后,容器水平面将下降hcm,两小球体积为V球=2×π×52×h,V1= V球
即 25πh=π ∴h=cm.
∴应填
1. 刚体与相对论的不兼容以及力的传播速度
首先我们应该看到,理想刚体这个概念本身就蕴含了一个假设,就是信息可以瞬间传递。为什么这么说呢?因为刚体在加速过程中各点之间距离不变,所以如果在一端受力的话,刚体上所有的点必须同时得到一个大小和方向相同的加速度。问题是,刚体远端的点凭什么知道近端受到了压力呢?允许刚体概念的存在就必然要承认“近端受力”这个信息可以按无穷大的速度传遍整个刚体上每一个点,所以它在理念上就跟狭相的“信息传递速度有上限”不相容。而在牛顿力学中就没有这个问题,牛顿力学中至少在理论上是允许有理想刚体的,尽管在现实中物体总会有形变。
那么,在物理现实中“一端受力”这个信息究竟是怎么传递的,又是以多快的速度传递的呢?答案其实是大家都熟悉的现象,就是声波!它的传递速度自然就是声速。
在固体中,组成它的微粒(分子,原子)是以电磁力结合在一起的。固体跟气体和液体的区别在于每个微粒的位置是相对固定的。作为一个简化的模型,我们可以想象这些粒子就像一些彼此用弹簧连在一起的小球,弹簧的弹力在这里就代表电磁力。当我们移动小球时,小球会在一个方向压缩弹簧,另一个方向拉伸弹簧,从而把能量传递给周围的弹簧;弹簧又推动其它小球,把能量进一步传递出去。另外弹簧被压迫时,所连的小球会互相靠近,拉伸时小球会彼此远离,就会在我们的模型中造成疏密相间的情况。最初的小球因为弹簧的固定作用会很快静止下来,但这些小球的位移造成的疏密相间的密度变化却会一直向前传播,这就是我们熟悉的声波。用手推棍子的一端所造成的密度变化只不过是一种频率特低,振幅很不稳定的声波而已,它的传播速度跟我们能听到的声波遵从同样的规律。
以上的朴素模型不仅可以用来解释力的传播机制,并且可以用来理解它的传播速度依赖哪些因素。首先,连接小球的弹簧越硬(不易被拉伸或压缩),旁边的小球就会越快受到影响;其次,小球越重,惯性就越大,就越不容易推动,传播速度就越慢。弹簧的抗拉伸抗压缩能力是固体的组成材料的固有特性,我们有个专门名词来称呼它,叫做“弹性模量”(elastic modulus);而小球在单位体积的质量就是材料的密度。弹性模量越大,密度越小的固体,声波在其中的传播速度就越大。它跟声波本身特性(频率,强度等等)反而没什么关系。
那么假如你一门心思地要让力的传播速度超过声速,比如用超过声速的高速来推拉这根棍子,结果会怎么样呢?首先这极难做到(如果在空气中要做到这一点,你就得突破所谓音障。固体的音障会更难突破),如果真做到了,会对棍子造成结构性的破坏(多半远远没到那样的高速时棍子就断了)。
最后稍稍歪下楼。前面提到密度越小声速越快时,估计有好多人在心里偷偷怀疑了一下。这是很自然的,因为声速在空气中最慢,液体中其次,固体中最快,所以分明是密度越大速度越快。解释也很容易,这是因为固体的弹性模量大于液体,液体又远大于气体,所以它们的密度差异被弹性模量的大小差异完全掩盖了。
今天先到这里,下次讨论相对论中的刚性问题。
2.相对论中的刚性
1905年9月26日,爱因斯坦发表了他的“奇迹年论文”中的第一篇,《论动体的电动力学》,由此宣告了狭义相对论的诞生。
我们已经看到牛顿力学的刚体是跟相对论不相容的。在1905年后的若干年中,许多物理学家都试图建立相对论框架下的刚体运动理论,其中包括爱因斯坦本人,还有波恩,劳厄这样的牛人。为什么这些大物理学家都如此注重刚体的概念呢?
大家想必读过“郑人买履”的故事,这位老兄宁可多跑一趟去拿量好的尺码,也不肯拿脚去试鞋的大小,因为他 “宁信度,无自信”。不管故事原来的moral story是什么,我的想法是,如果把这位古代郑国人换成一个以严谨著称的德国人,他有可能做出同样选择吗?我是觉得不好说。
在我看来郑人买履的故事揭示了一个人们心中根深蒂固的信念,就是绝对长度的存在。脚的大小也许上午跟下午就有区别,但尺码却不会变,尤其是具体的尺码所代表的抽象的一尺,一米,更不会变。刚体的概念正是和这种信念密不可分的。
相对论的出现意味着独立于参照系的绝对长度概念的破灭。仅仅因为这个原因,经典的刚体概念也不再成立,因为静止系和随动系不可能对加速运动中的物体的长度达成共识。但是简单地放弃这个传统的概念恐怕不能让人满意。刚体的概念可以简化推理过程,简化定理叙述,也是各种力学和运动理论的试金石。所以不管是为了传统的延续还是讨论的方便,大家都希望找出相对论框架下的替代品。
另一个历史的原因,是因为当时人们虽然发现了电子的存在,但它的模型却用了力学中的刚体。这个经典刚体模型虽然在低速下取得了一些成绩,但在高速时却让好多人感到头疼,这些处于头疼中的包括索末菲(Sommerfeld),赫兹(Hertz)和史瓦西(Schwarzschild)。所以在相对论下如何处理电子的运动学是个很迫切又重要的课题。波恩(Max Born)甚至认为,能否很好的描述电子的运动将是相对论成功还是失败的标志。
那个帖子被删了,其中有不少精彩的回复,事情过去就算了。我还是记得其间几位吧友对这个问题讨论得很热闹。
重新开始吧。记得昨天的讨论大致涉及下述问题:
问题1:相对论与刚体有关系吗?假如有,这是一个什么样的刚体?
问题2:光(电磁波)在刚体中是如何传播的?
问题3:能量(力)在刚体中是如何传播的?
问题4:声音在刚体中是如何传播的?
问题5:长度为1光年的刚体“超光速”问题?
问题6:......
重新开始吧。记得昨天的讨论大致涉及下述问题:
问题1:相对论与刚体有关系吗?假如有,这是一个什么样的刚体?
问题2:光(电磁波)在刚体中是如何传播的?
问题3:能量(力)在刚体中是如何传播的?
问题4:声音在刚体中是如何传播的?
问题5:长度为1光年的刚体“超光速”问题?
问题6:......
以下来自豆瓣:
狭义相对论里的刚体
2009-07-29 21:42:16来自: cmp0xff不小心(添加签名档)
关于旋转系里面时空结构改变的解释里面,很经典的是一片二维的刚体,绕一根垂直于它表面的定轴旋转。那么以轴和刚体的交点为原点任选一个惯性系S(也就是站在刚体外面观察刚体),刚体径向的长度度量是不变的(径向速度为0),而切向的长度度量发生洛仑兹收缩(切向速度为omega*r),因而在刚体上任意取一个“圆周”,其周长与半径之比小于2*PI。
因此这个刚体的“形状”发生了改变。那么这个刚体的“刚性”表现在哪里呢?如果真的有这样一个盘子,让它高速旋转起来,盘子的物质结构又会发生什么变化呢? 喜欢
2009-07-29 22:53:57 捕.风 Sophy (这是病,得治。)
你看盘子的时候是在两个不同状态下看的吧。
一个是盘子静止的时候,一个是盘子旋转的时候。在这两个状态切换的时候才有洛伦茨变换。单独考虑它在其中一个状态的时候,它还是刚性的呀。
下面一个问题让我想到另一个问题,我们讨论物质结构的时候,究竟是应该站在那个参考系来考量呢?如果想对盘子静止的话,它就没有改变了吧。
呵呵,程度尚浅,不知道对不对,等待牛牛解答。
2009-07-30 07:20:14 cmp0xff不小心 (添加签名档) @捕风
如果考虑盘子从静止缓慢加速,那么就有“非刚性”的“形变”了吧。
呃这里我的结论发生了一些问题,ms不是小于2*PI而是大于2*PI,jiong
2009-07-30 13:38:24 捕.风 Sophy (这是病,得治。)
嗯,的确在加速的过程中是“形变”了,不过想问一下刚体的刚性定义是在什么情况下“任意两个点的距离不变”呢?
ms是指在受力的情况下吧。若是考虑相对论效应的情况下,任何物质都不能保持“形状不变”吧。呵呵,我也不是很清楚。
2009-07-30 14:01:43 [已注销]
相对论情况下就不存在刚体这个模型。。。
想想看如果真的存在刚体的话
那么你随意找个点a作用下b马上就会有反映了。。。
超距作用就达成了。。。
2009-07-30 14:53:36 cmp0xff不小心 (添加签名档) @Γει|ωЭ>
爱因斯坦爷爷写的《相对论》一书里面提到了我说的(包含“刚体”模型)例子,作为支持“非惯性系中时空结构发生改变”的例证
@捕风
不知道啊不知道……
2009-08-04 11:40:31 VapourNov (君子固穷)
改变的是“空间”本身,而不是存在于空间中的“体”。
2010-02-07 20:46:54 cmp0xff不小心 (添加签名档)
恩这个问题似乎最终解决了。在转动起来之后刚体确实[必须]发生形变,因此刚体模型是不能在相对论情形里面在有加速度的情形中存在的。
2010-02-08 09:04:48 [已注销] 相对论考虑的就是信息的传播,缸体模型就不是干这个的。更好的提法似乎是,相对论观点中的客体会怎样行为。
狭义相对论里的刚体
2009-07-29 21:42:16来自: cmp0xff不小心(添加签名档)
关于旋转系里面时空结构改变的解释里面,很经典的是一片二维的刚体,绕一根垂直于它表面的定轴旋转。那么以轴和刚体的交点为原点任选一个惯性系S(也就是站在刚体外面观察刚体),刚体径向的长度度量是不变的(径向速度为0),而切向的长度度量发生洛仑兹收缩(切向速度为omega*r),因而在刚体上任意取一个“圆周”,其周长与半径之比小于2*PI。
因此这个刚体的“形状”发生了改变。那么这个刚体的“刚性”表现在哪里呢?如果真的有这样一个盘子,让它高速旋转起来,盘子的物质结构又会发生什么变化呢? 喜欢
2009-07-29 22:53:57 捕.风 Sophy (这是病,得治。)
你看盘子的时候是在两个不同状态下看的吧。
一个是盘子静止的时候,一个是盘子旋转的时候。在这两个状态切换的时候才有洛伦茨变换。单独考虑它在其中一个状态的时候,它还是刚性的呀。
下面一个问题让我想到另一个问题,我们讨论物质结构的时候,究竟是应该站在那个参考系来考量呢?如果想对盘子静止的话,它就没有改变了吧。
呵呵,程度尚浅,不知道对不对,等待牛牛解答。
2009-07-30 07:20:14 cmp0xff不小心 (添加签名档) @捕风
如果考虑盘子从静止缓慢加速,那么就有“非刚性”的“形变”了吧。
呃这里我的结论发生了一些问题,ms不是小于2*PI而是大于2*PI,jiong
2009-07-30 13:38:24 捕.风 Sophy (这是病,得治。)
嗯,的确在加速的过程中是“形变”了,不过想问一下刚体的刚性定义是在什么情况下“任意两个点的距离不变”呢?
ms是指在受力的情况下吧。若是考虑相对论效应的情况下,任何物质都不能保持“形状不变”吧。呵呵,我也不是很清楚。
2009-07-30 14:01:43 [已注销]
相对论情况下就不存在刚体这个模型。。。
想想看如果真的存在刚体的话
那么你随意找个点a作用下b马上就会有反映了。。。
超距作用就达成了。。。
2009-07-30 14:53:36 cmp0xff不小心 (添加签名档) @Γει|ωЭ>
爱因斯坦爷爷写的《相对论》一书里面提到了我说的(包含“刚体”模型)例子,作为支持“非惯性系中时空结构发生改变”的例证
@捕风
不知道啊不知道……
2009-08-04 11:40:31 VapourNov (君子固穷)
改变的是“空间”本身,而不是存在于空间中的“体”。
2010-02-07 20:46:54 cmp0xff不小心 (添加签名档)
恩这个问题似乎最终解决了。在转动起来之后刚体确实[必须]发生形变,因此刚体模型是不能在相对论情形里面在有加速度的情形中存在的。
2010-02-08 09:04:48 [已注销] 相对论考虑的就是信息的传播,缸体模型就不是干这个的。更好的提法似乎是,相对论观点中的客体会怎样行为。
在物理学里,理想刚体(rigid body)是一种有限尺寸,可以忽略形变的固体。不论是否感受到外力,在刚体内部,质点与质点之间的距离都不会改变。根据相对论,这种物体不可能实际存在,但物体通常可以假定为完美刚体,前提是必须满足运动速度超小于光速的条件。在经典力学里,刚体通常被视为连续质量分布体;在量子力学里,刚体被视为一群粒子的聚集。例如,分子(由假定为质点的电子与核子组成)时常会被视为刚体(请参阅条目分子的分类为刚性转子)。
以上来自维基
以上来自维基
- 推荐 来自 贴吧游戏
- 2012-08-22 22:40
前面鱼姐已经给出了一个提纲。我就打算按这个来逐条讨论这些问题,不过当中可能改变顺序甚至合并一些问题。另外,我在这里会尽量避免公式,计算之类,而以解释为主,侧重点不在证明的严谨,而在于怎么从物理的观点来理解各种现象。而且这是贴吧不是课堂,所以我有时也许会天马行空一番,歪下楼完全可能,希望大家有耐心(话说我码字速度也巨慢无比)。最后,下面要讲的纯属个人的理解,所以错漏难免,希望大神们能及时指正。
前些时候有吧友问了这么一个问题:“假设有甲乙两人相距一光年。甲拿着一根长一光年的棍子伸到乙的面前打出各种信息(比如莫尔斯电码),这样岂不就实现超光速通讯了?”
上面问题中其实有个隐含条件,就是这根棍子是我们在经典力学中经常遇到的“理想刚体”。相吧对这类问题中的道具都已经有了“昵称”,把它叫做“神棍”。这根“神棍”的神奇之处就在于它无论在加速过程中还是受力情况下都不会发生形变。换句话说,棍子上各点之间的距离永远不变。
利用这样一根刚体长棍,实现超距瞬间通讯的确不难。熟悉狭义相对论的朋友会很快指出,这正说明了经典力学中的刚体概念跟狭相是不相容的。也就是说相对论中没有牛顿力学的理想刚体。
但是有很多人也许对这个简单的否定答案不能完全满意。我们当然相信狭义相对论,所以理想刚体显然不存在。但是怎么从物理上来理解这一点呢?假如我真拿根很长的铁棒钢棍之类,靠推拉它来传递信息,会出现什么情况呢?如果不能瞬间完成,那么真正的信息传递速度应该是多少呢?
前些时候有吧友问了这么一个问题:“假设有甲乙两人相距一光年。甲拿着一根长一光年的棍子伸到乙的面前打出各种信息(比如莫尔斯电码),这样岂不就实现超光速通讯了?”
上面问题中其实有个隐含条件,就是这根棍子是我们在经典力学中经常遇到的“理想刚体”。相吧对这类问题中的道具都已经有了“昵称”,把它叫做“神棍”。这根“神棍”的神奇之处就在于它无论在加速过程中还是受力情况下都不会发生形变。换句话说,棍子上各点之间的距离永远不变。
利用这样一根刚体长棍,实现超距瞬间通讯的确不难。熟悉狭义相对论的朋友会很快指出,这正说明了经典力学中的刚体概念跟狭相是不相容的。也就是说相对论中没有牛顿力学的理想刚体。
但是有很多人也许对这个简单的否定答案不能完全满意。我们当然相信狭义相对论,所以理想刚体显然不存在。但是怎么从物理上来理解这一点呢?假如我真拿根很长的铁棒钢棍之类,靠推拉它来传递信息,会出现什么情况呢?如果不能瞬间完成,那么真正的信息传递速度应该是多少呢?
1. 刚体与相对论的不兼容以及力的传播速度
首先我们应该看到,理想刚体这个概念本身就蕴含了一个假设,就是信息可以瞬间传递。为什么这么说呢?因为刚体在加速过程中各点之间距离不变,所以如果在一端受力的话,刚体上所有的点必须同时得到一个大小和方向相同的加速度。问题是,刚体远端的点凭什么知道近端受到了压力呢?允许刚体概念的存在就必然要承认“近端受力”这个信息可以按无穷大的速度传遍整个刚体上每一个点,所以它在理念上就跟狭相的“信息传递速度有上限”不相容。而在牛顿力学中就没有这个问题,牛顿力学中至少在理论上是允许有理想刚体的,尽管在现实中物体总会有形变。
那么,在物理现实中“一端受力”这个信息究竟是怎么传递的,又是以多快的速度传递的呢?答案其实是大家都熟悉的现象,就是声波!它的传递速度自然就是声速。
在固体中,组成它的微粒(分子,原子)是以电磁力结合在一起的。固体跟气体和液体的区别在于每个微粒的位置是相对固定的。作为一个简化的模型,我们可以想象这些粒子就像一些彼此用弹簧连在一起的小球,弹簧的弹力在这里就代表电磁力。当我们移动小球时,小球会在一个方向压缩弹簧,另一个方向拉伸弹簧,从而把能量传递给周围的弹簧;弹簧又推动其它小球,把能量进一步传递出去。另外弹簧被压迫时,所连的小球会互相靠近,拉伸时小球会彼此远离,就会在我们的模型中造成疏密相间的情况。最初的小球因为弹簧的固定作用会很快静止下来,但这些小球的位移造成的疏密相间的密度变化却会一直向前传播,这就是我们熟悉的声波。用手推棍子的一端所造成的密度变化只不过是一种频率特低,振幅很不稳定的声波而已,它的传播速度跟我们能听到的声波遵从同样的规律。
以上的朴素模型不仅可以用来解释力的传播机制,并且可以用来理解它的传播速度依赖哪些因素。首先,连接小球的弹簧越硬(不易被拉伸或压缩),旁边的小球就会越快受到影响;其次,小球越重,惯性就越大,就越不容易推动,传播速度就越慢。弹簧的抗拉伸抗压缩能力是固体的组成材料的固有特性,我们有个专门名词来称呼它,叫做“弹性模量”(elastic modulus);而小球在单位体积的质量就是材料的密度。弹性模量越大,密度越小的固体,声波在其中的传播速度就越大。它跟声波本身特性(频率,强度等等)反而没什么关系。
那么假如你一门心思地要让力的传播速度超过声速,比如用超过声速的高速来推拉这根棍子,结果会怎么样呢?首先这极难做到(如果在空气中要做到这一点,你就得突破所谓音障。固体的音障会更难突破),如果真做到了,会对棍子造成结构性的破坏(多半远远没到那样的高速时棍子就断了)。
最后稍稍歪下楼。前面提到密度越小声速越快时,估计有好多人在心里偷偷怀疑了一下。这是很自然的,因为声速在空气中最慢,液体中其次,固体中最快,所以分明是密度越大速度越快。解释也很容易,这是因为固体的弹性模量大于液体,液体又远大于气体,所以它们的密度差异被弹性模量的大小差异完全掩盖了。
今天先到这里,下次讨论相对论中的刚性问题。
- wolfking97: 回复 狐说笆道 :恩,我有点明白你的意思了。你可以看看当初对以太的要求。那个会很接近你想象的理想刚体,因为那个就是用经典力学模式来传递光速用的。2012-8-23 06:37回复
根据wolfking97及其他吧友的论述,是否可以有下述结论?
1.刚体仅在牛顿体系中成立,其信息(?)传播速度(音速)是无穷大;
2.信息在刚体中的传播速度是无穷大,这与相对论原理相悖;
3.刚体内部是不允许有应变存在的。
楼下继续~~
1.刚体仅在牛顿体系中成立,其信息(?)传播速度(音速)是无穷大;
2.信息在刚体中的传播速度是无穷大,这与相对论原理相悖;
3.刚体内部是不允许有应变存在的。
楼下继续~~
有一点我觉得值得指出,那就是,在牛顿力学框架下,理想刚体内部是不会有“声音”这种东西的。——想想声音是怎么在固体内传播的,就不难理解这种事情。既然牛顿力学中的刚体内部不可能存在声音,自然也不存在所谓的音速,实际上意思是任何形变在一瞬间就传遍了整个刚体,所以过渡到相对论框架下一切作用就必须以光速传递,此时与其说某物质团块是刚体,不如说时空本身是个刚体。
昨天躺床上想了想,23楼昨天最后给出的思路具有以下特点:
1.由于使用固有时作为参量,四维间隔作为考量标准,这两者都是四维标量,所以自然满足洛伦兹协变。
2.它在低速情况下的确可以变成牛顿力学中的刚体,因为此时坐标时与固有时相同,而四维间隔的相等也就意味着三维空间距离的相等。
3.这种刚体在物理上具有的一个明显特性是,在刚体的随动系看来,物体不会发生任何形变。
1.由于使用固有时作为参量,四维间隔作为考量标准,这两者都是四维标量,所以自然满足洛伦兹协变。
2.它在低速情况下的确可以变成牛顿力学中的刚体,因为此时坐标时与固有时相同,而四维间隔的相等也就意味着三维空间距离的相等。
3.这种刚体在物理上具有的一个明显特性是,在刚体的随动系看来,物体不会发生任何形变。
接10楼,回复 坂上中微子 :哎,当发生一个黑洞吞噬另一个黑洞的事件后,新构成的时空结构(另一种情况)与原先的时空结构(初始情况)相比有没有发生变化?我知道最终结果肯定是“另一种情况”,假如初始情况与最后一种情况的时空结构不一样,那么你就承认了初始时空结构发生了变化,也就是原先的时空结构是刚体的假设有问题。
给定定解条件1,定解问题有解1(时空结构1),假如该时空结构满足“四维刚体”定义,任意两点之间的间隔保持不变,其间隔为A1;
在相同的方程式(组)下,给定定解条件2,定解问题有解2(时空结构2),假如该时空结构也满足“四维刚体”定义,任意两点之间的间隔保持不变,其间隔为A2;
问题:
A1与A2之间是什么关系?
假如A1不等于A2,是否意味着由定解条件1变为定解条件2时,任意两点之间的间隔发生了变化?而这样的变化是否意味着定解条件1所属四维刚体的假设不成立?
你一直在和我绕“初始条件”和“最终结果”之间的关系,妄图混淆俺的视线,呵呵~~~~俺现在讲的是定解条件,全部包含了~~~
我觉得你的思路可以考虑,但是你现在仍然无法自圆其说,加油吧~~~
在相同的方程式(组)下,给定定解条件2,定解问题有解2(时空结构2),假如该时空结构也满足“四维刚体”定义,任意两点之间的间隔保持不变,其间隔为A2;
问题:
A1与A2之间是什么关系?
假如A1不等于A2,是否意味着由定解条件1变为定解条件2时,任意两点之间的间隔发生了变化?而这样的变化是否意味着定解条件1所属四维刚体的假设不成立?
你一直在和我绕“初始条件”和“最终结果”之间的关系,妄图混淆俺的视线,呵呵~~~~俺现在讲的是定解条件,全部包含了~~~
我觉得你的思路可以考虑,但是你现在仍然无法自圆其说,加油吧~~~
你现在讲的是定解条件,但一个问题里允许两种互不相容的定解条件同时出现吗?
如果不允许,你就不能把这种变化视作刚性的丧失。你用改变定解条件来否定刚性,等于是你把原来的刚体换成另一块形状不同的刚体,然后说,看,形状变了,所以根本就不是刚体嘛——这种逻辑显然是荒唐的。
如果不允许,你就不能把这种变化视作刚性的丧失。你用改变定解条件来否定刚性,等于是你把原来的刚体换成另一块形状不同的刚体,然后说,看,形状变了,所以根本就不是刚体嘛——这种逻辑显然是荒唐的。
- fishwoodok: 但一个问题里允许两种互不相容的定解条件同时出现吗? ------------------------------------------------------------------------------ 请你看看我的表述,我说过“同时”吗?为何就不仔细看清楚呢?对一个数理方程组,不可以有N个不同定解条件吗?无非是解不一样而已。2012-8-26 04:47回复
-
还有8条回复,点击查看
另外,我并没有纠结于初始条件和最终结果之间的关系,我一直强调的是初始条件的改变不是物理变化。任何事情都有这个问题,比如说“如果我让某个物体静止,它的能量就是零,但如果我改让它运动起来,那能量就不是零,是零和不是零显然不是相等的,所以能量守恒是错误的”——这段话错在哪里够明显了吧?
或者,时空的刚性问题与主楼的话题其实没有关系,我们要探讨的是物质而不是时空。
所以这个问题不必去纠结,我们就先认定时空是平直的,然后去讨论一下物质团块在什么情况下是刚体就行了,时空本身刚不刚其实无所谓。
所以这个问题不必去纠结,我们就先认定时空是平直的,然后去讨论一下物质团块在什么情况下是刚体就行了,时空本身刚不刚其实无所谓。
- wolfking97: 回复 fishwoodok :我在组织材料呢。我先贴段上来吧。薇娘的刚性条件我感觉是太强,是所谓Killing Motion。但这个不用数学说不太清。2012-8-26 06:25回复
2.相对论中的刚性
1905年9月26日,爱因斯坦发表了他的“奇迹年论文”中的第一篇,《论动体的电动力学》,由此宣告了狭义相对论的诞生。
我们已经看到牛顿力学的刚体是跟相对论不相容的。在1905年后的若干年中,许多物理学家都试图建立相对论框架下的刚体运动理论,其中包括爱因斯坦本人,还有波恩,劳厄这样的牛人。为什么这些大物理学家都如此注重刚体的概念呢?
大家想必读过“郑人买履”的故事,这位老兄宁可多跑一趟去拿量好的尺码,也不肯拿脚去试鞋的大小,因为他 “宁信度,无自信”。不管故事原来的moral story是什么,我的想法是,如果把这位古代郑国人换成一个以严谨著称的德国人,他有可能做出同样选择吗?我是觉得不好说。
在我看来郑人买履的故事揭示了一个人们心中根深蒂固的信念,就是绝对长度的存在。脚的大小也许上午跟下午就有区别,但尺码却不会变,尤其是具体的尺码所代表的抽象的一尺,一米,更不会变。刚体的概念正是和这种信念密不可分的。
相对论的出现意味着独立于参照系的绝对长度概念的破灭。仅仅因为这个原因,经典的刚体概念也不再成立,因为静止系和随动系不可能对加速运动中的物体的长度达成共识。但是简单地放弃这个传统的概念恐怕不能让人满意。刚体的概念可以简化推理过程,简化定理叙述,也是各种力学和运动理论的试金石。所以不管是为了传统的延续还是讨论的方便,大家都希望找出相对论框架下的替代品。
另一个历史的原因,是因为当时人们虽然发现了电子的存在,但它的模型却用了力学中的刚体。这个经典刚体模型虽然在低速下取得了一些成绩,但在高速时却让好多人感到头疼,这些处于头疼中的包括索末菲(Sommerfeld),赫兹(Hertz)和史瓦西(Schwarzschild)。所以在相对论下如何处理电子的运动学是个很迫切又重要的课题。波恩(Max Born)甚至认为,能否很好的描述电子的运动将是相对论成功还是失败的标志。
- wolfking97: 回复 fishwoodok :我去读了爱因斯坦,劳厄,波恩的英文版。好多素材来自波恩的文章。比如电子运动学部分。有些是德文的,丢下太久捡不起来了。2012-8-26 07:45回复
-
wolfking97: 回复 fishwoodok :他的意思是,4维时空就代表了过去现在永远,一切发生过跟尚未发生的事情。所以黑洞的互相吞噬是时空结构的一部分。把Z轴暂时当时间轴的话,z=0时有两个黑洞,z=1时只有一个大黑洞,两个时刻空间结构当然不同,但却是整个一体的“时空”。
-----------------------------------------------------------------------------------
我确实理解不了。四维时空是一个“概念”,所有的事件都可以涵盖在这样的一个概念中。根据你的说法,四维时空的组成是:其间各异的时空结构的**?
-----------------------------------------------------------------------------------
我确实理解不了。四维时空是一个“概念”,所有的事件都可以涵盖在这样的一个概念中。根据你的说法,四维时空的组成是:其间各异的时空结构的**?
- wolfking97: 你可以认为,其间各异的空间结构通过时间完美融合在一起。当然在这里我们已经是在考虑广相了。从狭相的角度,时空是平直的,物体的“运动史”构成上面的一个流(current)。这两种理论都是决定论的,理论上说,整个世界的历史,从过去到无限的未来,都在上面被决定了,都有自己固定的“流”。2012-8-26 08:03回复
- wolfking97: 所谓的按时间的“演变”,从相对论角度看只是我们硬把时间停住截取的一个个截面。就像你去做MRI,仪器给出的是空间的一个个二维截面,所以你会先看到五根手指骨的五个圆形截面,然后截面渐渐变粗,到上面融合成掌骨,最后到手腕,手臂。但其实整个人的解剖结构才是全部的几何。2012-8-26 08:14回复
- wolfking97: 决定论的物理学,就是指通过前面指骨的截面,可以推出以后到掌骨的融合等等。前面的物质分布也决定了后面的分布。跟熟悉人体解剖学的医师从指掌部分多少可以推测手臂部分不无相似之处。2012-8-26 08:21回复
- wolfking97: 回复 wolfking97 :相对论的最大贡献,在于指出了时空是密不可分的,以前我们常做的那种MRI,只是因为那台机器有问题,能拍出片子的似乎都是一个角度,于是大家以为MRI只能按一个角度拍。后来又进口了一台,才发觉你完全可以用其它角度取截面。这意味着“现在”这个词不再有明确意义。2012-8-26 08:36回复
-
No comments:
Post a Comment