第八章静电场-2高斯定理_百度文库
wenku.baidu.com/view/b66690186bd97f192279e976轉為繁體網頁
电场线示例负电荷点电荷的电力线正电荷+ 一对带等量异种电荷的电力线+ 一对等量正点电荷的电力线+ + 一对异种不等量电荷的电力线+ 2q q 带电平行板电容器中 ...
wenku.baidu.com/view/b66690186bd97f192279e976轉為繁體網頁
場線是由向量場和初始點設定的軌跡。在空間裏,向量場在每一個位置,都設定了一個方向。只要按照向量場在每一個位置所指的方向來追蹤路徑,就可以素描出正確的場線。更精確地說,場線在每一個位置的切線必須平行於向量場在那一個位置的方向。
在空間內,由於,伴隨著每一個點的向量,組合起來,構成了向量場,場線可以說是一個專為向量場精心打造的顯像工具,能夠清楚地顯示出向量場在每一個位置的方向。假若向量場描述的是一個速度場,則場線跟隨的是流體的流線。在磁鐵的四周灑散鐵粉,可以清楚地顯示出磁場的磁場線。靜電荷的場線稱為電場線,從正電荷往外擴散,朝著負電荷聚集。
對於一個向量場,假若我們能夠完整地描述其所有的場線,那麼,這向量場在每一個位置的方向已完全地被設定了。為了同時表示出向量場的大小值,我們必須控制場線的數量,促使場線在任意位置的密度等於向量場在那位置的大小值。
場線的圖案能夠用來表達某些重要的向量微積分概念。場線從某一個區域的往外擴散或往內聚斂可以表達散度。場線的螺旋圖案可以表達旋度。
雖然大多數時候,場線只是一個數學建構,在某些狀況,場線具有實際的物理意義。例如,在電漿物理學裏,處於同一條場線的電子或離子會強烈地相互作用;而處於不同場線的粒子,通常不會相互作用。
1851年,法拉第提出了場線的概念[1
第八章静电场-2高斯定理_百度文库
wenku.baidu.com/.../c3b6693887c24028915fc333.html?r...轉為繁體網頁
... 在无电荷的地方)电场线不会中断3)(在无电荷的地方电场线不会相交; ) 在无电荷的地方电场线不会相交; 在无电荷的地方)电场线不会相交4)静电场线不闭合。
wenku.baidu.com/.../c3b6693887c24028915fc333.html?r...轉為繁體網頁
第八章静电场-2高斯定理_百度文库
wenku.baidu.com/view/b66690186bd97f192279e976轉為繁體網頁
... 1)电场线起于正电荷,终止于负电荷;电荷是电场线的“源”或“尾” 2)(在无电荷的地方)电场线不会中断; 3)(在无电荷的地方)电场线不会相交; 4)静电场线不闭合。
wenku.baidu.com/view/b66690186bd97f192279e976轉為繁體網頁
[DOC]真空中的静电场
jpk.hrbust.edu.cn/wuli/upfile/20058214218434.doc轉為繁體網頁
结论:静电场力作功与路径无关,静电力是保守力. 二. 静电场的环流定理. (). 说明: 的环流为零,静电场力作功与路径无关,静电场是无旋场(有势场),静电场线不闭合.
jpk.hrbust.edu.cn/wuli/upfile/20058214218434.doc轉為繁體網頁
Why cant Electrostatic field lines form closed loops?
My physics textbook says "Electrostatic field lines do not form closed loops. This is a consequence of the conservative nature of electric field." But I cant quite understand. Can anyone elaborate?
PS:- This question is answered. Please refer both the accepted answer and also the answer and the comments in Robin Ekman's answer for a complete understanding. | |||||
|
A force is said to be conservative if its work along a trajectory to go from a point
If a conservative force were to form loops, it could provide a non zero net work (because the direction of the force could always be the same as that of the looping trajectory) to go from A and then back to A, while at the same time its conservative character would ensure that this work should be zero; which is a contradiction. Hence, "conservative force" and "forming loops" are two incompatible properties that cannot be satisfied at the same time. | |||||
If there was a closed field line a particle following that line would eventually return to the same place but having a different energy so the field would not be conservative.
| |||||||||||||||||
|
The solution of Laplace's equation,
| |||
Robin is right in stating that if Electric Fields form closed loops, they wouldn't be conservative. But keep in mind that non-conservative Electric Fields can also be produced in some situations, like changing magnetic flux.
| |||||||||||||||||
|
If electric field lines would have been closed loops, then there would have been no isolated electric charge as like there exists no isolated magnetic pole. So, this is another reason why electric field lines can't form closed loops.
The magnetic field lines of a magnet form continuous closed loops, this is unlike electric dipole where the field lines begin from a positive charge and end on the negative charge or escape to infinity. Field lines of a bar magnet. Field lines of an electric dipole. | |||||||||||||||||||||
|
A different route to the same result, which you may or may not find more intuitive, would be
| |||||||||||||
|