原子和原子核
佚名
【电子】是一种最小的带电粒子。它也是最早被人们发现的基本粒子。带负电,电量为,1.602189×10-19库仑。是电量的最小单元。质量为9.10953×10-28克。常用符号e表示。电子在原子中,围绕于原子核外,其数目与核内的质子数相等,亦等于原子序数。导线中电流的产生即是电子流动的结果。一安培的电流相当于每秒通过6.24×1018个电子。利用电场和磁场,能按照人们的要求控制电子的运动(特别是在真空中),从而制造出各种电子仪器和元件,如各种电子管,电子显像管、
正电子的质量和电子相等,它的电量的数值和电子相等而符号相反,即带正电。一个电子和一个正电子相遇会发生湮没而转化为一对光子,即
一对正负电子,常称为正负电子对(电子偶)。能量超过1.02MeV(兆电子伏特)的光子穿过铅板时,会产生电子一正电子对,这个反应表示为
电子的运动质量m与静止质量m0的关系为
这里v是电子运动速度,c是光速,这就是相对论的公式。
【原子】组成单质和化合物分子的最小粒子。不同元素的原子具有不同的平均质量和原子结构。原子是由带正电的原子核和围绕核运动的、与核电荷核数相等的电子所组成。原子的质量几乎全部集中在原子核上。在物理化学反应中,原子核不发生变化。只有在核反应中原子核才发生变化。
【汤姆逊的原子核模型】汤姆逊的原子核模型是最早提出的原子核模型,他认为:构成原子的正电荷是均匀分布于球状原子内,原子大小乃是此正电荷球之大小,电子则埋藏于此正电荷中,当电子受到外界激励时,它即以平衡位置为中心作振动而发射光。当a粒子穿过此原子时,a粒子将受到散射,因电子质量很小,这项散射之主要原因是正电荷之斥力作用。由电磁理论预示加速的带电物体如振动的电子等会发射电磁辐射,故根据汤姆生模型,便可了解受激原子会发射电磁辐射的性质。在实际计算其可能发射的辐射能谱,即发现此模型所导致的结果,与实验观察到的能谱在数值上并不相符。1911年卢瑟福对原子核散射a粒子的实验加以分析之后,便得出汤姆生模型不正确的结论。卢瑟福分析的结果表明,正电荷并非布满在整个原子内,而是集中在原子中心的极小区域,或原子核内,就此,汤姆生的原子模型便被废弃了。
【a粒子的散射】 1911年卢瑟福等人用a粒子(He的原子核)射击重的金属箔,结果大部分a粒子穿过了金属箔而很少改变其运动方向,一少部分a粒子被分别散射到不同的方向上。他们测定了不同散射角中a粒子的数目,加以分析后,得出如下结论:原子是由一个很小的核心(原子核)和围绕着它运动的电子构成(原子行星模型),原子核所带电荷量为Ze(Z为该金属的原子序数,e为电子的电荷),其线度约为原子的十万分之一,一般为10-13~10-12厘米,a粒子散射,又称为卢瑟福散射,它是原子物理发展中最早期的重要实验之一。图5-1所示描述了a粒子通过重金属箔的散射情况。假设距原子核很远的地方,a粒子沿直线ab以速度V运动,以P表示直线ab与原子中心O(即原子的正电荷E所在的地方)的最短距离。P被称为“瞄准”距离,可由理论力学应用电学知识计算证明,在a粒子与电荷E之间存在着库仑相互作用力的情况下,a粒子沿双曲线运动。而a粒子轨道的偏转角θ(双曲线的渐近线之间的角)为下式决定:
式中M是a粒子的质量,重金属原子核的质量和a粒子的质量相比较,可以看作是无穷大。由上式可知,“瞄准”距离P愈小,偏转角θ愈大。对于不同的“瞄准”距离,a粒子的轨道形状可有如图5-2所示
能被弹回。这种情况往往称为a粒子背向散射。假定一束平行的a粒子穿过金属箔,并设单位时间内通过单位横截面的粒子数为n0。我们可以计算单位时间内有多少个粒子的偏转角是在给定的θ与θ+dθ之间。设偏转角θ与“瞄准”距离P对应,而偏转角θ+dθ与“瞄准”距离P—dP对应。在此情况下,偏转角在0~θ+dθ之间的粒子,是那些穿过以A为中心,以P为半径所作的宽为dP的环的面积中的粒子如图5-3所示。这样的粒子数目等于n。dS,式中dS为环的面积。如果金属箔每单位面积有N个原子,则单位时间内其偏转角在θ与θ+dθ之间的a粒子的总数为
dn=n0NdS
此关系式是在每一个a粒子只偏转一次的条件下才正确,而这个条件在金属箔足够薄时是能够实现的。环的面积dS近似地等于2πPdP。所以有
dn=2πn0NPdP
式中Z是原子核的电荷数(原子序数)。dn表示单位时间内散射角在已知值θ与θ+dθ之间的粒子数目。换句话说dn是单位时间内在开放角为2θ和2(θ+dθ)的二锥体之间的空间内飞行的a粒子数目。如果我们以这两个锥体的顶点c为球心,作一半径为r的球,则这两个锥体在球面上截出的面积为2πrsinθ·rdθ=2πr2sinθ· dθ的区域,如图 5-4所示的阴影部分。所有dn个粒子都射在这区域的面积上。因而落在单位面积上的粒子数目
实验的结果完全证实了理论的这一结论。
式中的θ,V,n0,N和测出的dn′诸值)。可以计算出各种元素原子核的电荷Q=Ze。其中Z是某种元素的原子序数。
【原子核的大小】根据卢瑟夫的核式结构模型,可以估计出原子核的线度不超过10-13〔厘米〕,它的这一线度也是由散射实验确定的。
粒子的散射)求出与不同偏转角θ对应的“瞄准”距离P。我们发现,对于重的元素,θ的值达到150°,P的数量级为10-13〔厘米〕。这表示,当a粒子中心与原子中心距离的数量级为10-13〔厘米〕的时候,相互作用力仍遵守库仑定律,由此可得出结论:原子核的线度不超过10-13〔厘米〕。因为整个原子的线度是一数量级为10-8〔厘米〕的量,这很显然说明了原子核在较原子小得多的体积内。原子核虽小但集中了原子的几乎全部质量,因此原子核的密度非常之大,如果在一立方厘米的体积中全部充满原子核,则它的质量约为一千万吨。
【卢瑟福】
Rutherford, Ernest(1871~1937年)物理学家。生于新西兰,长期在英国工作。在原子结构和放射性研究方面做出了重要的贡献。1899年发现放射性辐射中的两种成分,并由他命名为α射线和β射线,接着又发现新的放射性元素“钍”。1902年与英国化学家素第一起提出原子自然蜕变理论。1911年根据α粒子的散射实验(卢瑟福实验)最先发现原子核的存在,并提出了关于原子结构的行星模型。1919年用α粒子轰击氮原子而获得氧的同位素,第一次实现了元素的人工嬗变。
【玻尔】Bohr, Niels Henrik David(1885~1962年)丹麦物理学家。他在普朗克量子假说和卢瑟福原子行星模型的基础上,于1913年提出了氢原子结构和氢光谱的初步理论。后来,又提出了“对应原理”。这些工作,对量子论和量子力学的建立起了重要作用。此外,玻尔在原子核反应理论和解释重核裂变现象等方面,也有重要的贡献。1916年任哥本哈根大学理论物理教授。由于他在原子结构方面的研究成就而获1922年诺贝物理学奖。
【玻尔的原子理论】由丹麦物理学家玻尔根据原子行星模型用经典运动规律和普朗克的量子概念来阐明原子结构的初步理论。这一理论的基础是两个基本假设:(1)电子在原子中不可能沿着经典理论所允许的能量连续变化的所有的轨道运动,而只能沿着一组特殊的轨道运动。只有当电子运动的动量矩等于h/2π(h为普朗克常数)的整数倍时,其轨道才是稳定的。在每一稳定轨道中,原子具有一定的能量。处于稳定状态的电子不吸收也不发出辐射。(2)当电子从一个定态跃迁到另一个定态时,才产生辐射的吸收或发射现象。当原子从能量为En的能级跃迁到另一个能量为Em的能级时,将发射或吸收一定频率的光,频率的数值为
玻尔的理论只考虑到电子的圆周轨道,即电子只具有一个自由度,因此它对只有一个电子的氢原子和类氢原子的谱线频率作出了解释,对于具有两个或更多电子的原子所发的光谱,这理论遇到了根本的困难。后来索末菲将玻尔的量子化条件加以推广,使得它不仅能解释氢原子的光谱,而且对于只有一个价电子的复杂原子光谱也能较好地解释。玻尔理论的部分成就,促进了量子论的发展,在历史上曾起大的作用。
【波尔轨道】在玻尔的理论中,认为电子绕原子核运行是许多分立的圆形轨道。轨道半径在10-8厘米左右。在不同轨道上运行的电子各有确定的能量。当电子从外层轨道跳向内层轨道时,便发射光子。电子沿轨道运动这一概念并不正确,后已被量子力学的几率分布概念所取代,但由于它的直观性,现在仍然经常用轨道这个述语来近似地描述原子内部电子运动的规律性。根据玻尔的量子化条件,可以算出轨道的半径,对于圆形的轨道,电子的动量矩P为
P=mvr
又根据电子与核之间的作用力为库仑力,所以有
圆形轨道的向心力为
所以
量子数(见词目玻尔的原子理论)。得到
靠核最近的圆形轨道半径,约为0.529×10-8〔厘米〕。在原子物理中常用它作为一种长度单位以a0表示:
【量子数】表征微观粒子运动状态的一些特定数字。按照量子力学,表征微观粒子运动状态的某些物理量只能不连续变化,称为量子化。量子数就是用来确定它们所可能具有的数值。按照物理量的性质,量子数可以是整数或半整数,有的只能取正值,有的能取正值,也能取负值,但当微观粒子运动状态发生变化时,量子数的增减只能为1的整数倍。例如,电子在原子中的运动可用四个量子数表示:主量子数n只能取1,2,3,……等正整数,它是确定电子能量的主要量子数;角量子数L只能采取0,1,2……等正整数,它表示电子轨道动量矩;磁量子数m可以采用0和正或负整数,它表示电子轨道动量
子自旋动量矩在这一空间方向上的分量。
【基态】由量子的观点来看,微观粒子系统(如原子、原子核或其他多粒子体系等)所能具有的各种状态中能量最低的状态(也就是处于最低能级)叫做基态。当原子处于基态时,电子处于离核最近的轨道上,此时原子处于稳定状态。
【激发态】对于微观粒子体系(如原子、原子核)当其内部能量高于基态能量时所处的能量状态称为激发态。当原子中的电子通过某种方式从外界吸收光子或与其他粒子相互作用而获得能量时,原子便由基态跃迁到激发态。处于激发态的原子是不稳定的,一般是由发射光子或与其他粒子发生作用而回复到基态。例如,当激发态的原子在回到基态时,它将以光子的形式放出它所减少的这部分能量。光子的频率为
其中w2表示发光之前原子的能量,而w1表示发光之后的能量。
【能级】微观粒子系统在束缚态中只能处于一系列不连续的、分立的状态,这些状态对应着一定的能量,它们的数值各不相等。为了形象化起见,人们往往按比例以一系列不同高度的水平线代表不同的能量状态,并把这些状态的能量按大小排列,犹如一级一级的阶梯。故称为能级。例如,原子中的电子处于一系列不连续而分立的定态。每一个定态所具有的能量可用一定高度的能级表示。对于氢原子,电子在各个定态上的能量(包括动能和电势能)为
式中K为静电力恒量,等于9.0×109N·m2/C2,e和m分别为电子的电量和质量,h为普朗克常数。由于取电子电离时(即电子脱离原子时)的电势能为零,所以氢原子能量En取负值。图5-5是按能量数值的大小排列成的能级图。从图中可以看出,能级之间的间隔不等,n愈大,即能量愈高时能级愈密。n=1的能级代表基态。n=2,3,4……都叫做原子的激发态。n→∞对应于使原子电离所需要的最小能量。使原子中的电子从能量较低的状态跃迁到能量较高的状态叫做原子受激发。将电子从基态激发到脱离原子,
叫做电离,这时所需的能量叫电离电势能。例如氢原子中基态的能量为-13.6eV(电子伏特),使电子电离的电离势能就是13.6eV(即2.18×10-18焦耳)。
【跃迁】微观粒子系统从某一状态(初态)到另一个状态(末态)的过程。如一个处于能量较高的激发态原子,将发射光子而变到能量较低的激发态或基态,称为原子从高能态到低能态的跃迁。这时原子以光子的方式放出能量。如果原子由基态过渡到激发态或由较低的激发态过渡到较高的激发态,称为原子从低能态到高能态的跃迁。这时原子需要吸收相应的能量。
【量子】在微观世界中的某些物理量不能连续变化,而只能以某一最小单位的整数倍发生变化。这一物理量的最小单位称为该物理量的量子,普朗克在研究黑体辐射时,首先发现自然现象中的这一不连续的量子性质。他发现物质吸收或发射的辐射能量量子,其大小为h(其中h为普朗克常数,v为辐射的频率)。能量分化为量子的现象,只是普遍自然规律中的一个例子,其他物理量如动量矩等也是量子化的。有时也将同某种场联系在一起的基本粒子称为这个场的量子。例如电磁场的量子就是光子。每种物理量的量子数值都很小,所以在较大物体的运动中,量子化不发生显著地影响,各量犹如能连续变化一样。但对微观粒子(如电子、原子)来说,这种量子化效应就不能忽视,对于它们,牛顿力学已不适用,必须用量子力学来研究。
【量子论】探索微观粒子运动所遵从的量子规律的初步理论,是量子力学的先驱。是从普朗克在物理学中引入量子概念(1900年)开始,特别是在玻尔提出他的氢原子理论(1913年)以后发展起来的。量子论仍然以经典物理规律为基础,但加上了一些反映微观运动具有量子特性的附加条件(量子条件)。它指出,在物体大、运动范围广(相当于量子数很大)的极限情形下,微观运动规律应该趋近于宏观运动规律;并且两种运动规律应该具有相互对应的关系(对应原理)。量子论能够解释一些简单的原子、分子所发射的光谱和黑体辐射等现象,但由于它的半经典性质,其结果在数量方面往往不能与实验符合。量子论本身还包含着很大矛盾,在解释许多实验事实时都遇到严重困难。它的进一步发展导致量子力学的建立(1924~1926年),现在这一理论已被量子力学所代替,故有时称之为旧量子论,但由于它的直观性强,在解释某些现象(如复杂的光谱)时,还常被采用。人们有时也把研究微观运动的整个学科统称为量子论或量子物理学。
【原子光谱的规律】在19世纪下半期,已了解到稀薄气体发光产生的光谱是不连续的。从1885年,瑞士中学教师巴耳末发现描述氢原子光谱规律性的巴耳末公式开始,由大量实验数据分析出原子发射的线光谱是由按照一定规律组成的若干线系构成的。例如,氢原子光谱谱线的波数可用下述的经验公式来描述
式中R=1.096776×107〔米〕-1,称为里德伯常数。m与n都是正
线属于同一个线系,当
m=1,n=2,3,4,……组成的线系叫赖曼线系。
m=2,n=3,4,5,……组成的线系叫巴耳末线系。
m=3,n=4,5,6,……组成的线系叫帕邢线系。
m=4,n=5,6,7,……组成的线系叫布喇开线系
m=5,n=6,7,8,……组成的线系叫做逢德线系。
由此可见,氢原子光谱具有确定的规律性,每一条光谱线的波长都
T(m)和T(n)叫做光谱项。由于氢原子光谱具有上述的规律性,人们又企图在其他元素的原子光谱中寻找类似的规律。不过其他原子的光谱比氢原子的光谱复杂,这表明其他原子内部的结构比氢原子复杂。但它们也组成若干线系,每一条谱线也可以写成两个光谱项的差。例如类氢离子的光谱可表述为
或中R为里德伯常数,Z为类氢离子的原子序数,m、n是整数,且n>m。碱金属的光谱项和氢的光谱项不同,碱金属光谱项中多一个改正数α、β,即
总之,关于原子光谱规律可归结为;(1)谱线的波数由两个谱项的差值来决定。(2)如果前项保持定值,后项按整数参变量而变,则所给出的各谱线便是同一谱系中各谱线的波数。(3)改变定项的数值,便给出不同的谱系。
【氢原子光谱解析】玻尔的原子理论是建立在三个基本假设的基础上:(1)原子系统只能具有一系列的不连续的能量状态,在这些状态中,电子虽然作加速运动但不辐射电磁能量。这些状态叫做原子的定态,相应的能量分别为E1,E2,E3……(E1<E2<E3……)这就是所谓的定态假设。(2)当原子从一个具有较大能量E2的定态跃迁到另一个能量较低的定态E1时,它辐射出具有一定频率的光子,光子的能量为
这一假设确定了原子发光的频率——它就是频率假设。(3)原子的不同能量状态和电子沿不同的圆形轨道绕核运动相对应,电子的可能轨道的分布也是不连续的,只有当轨道的半径r与电子的动量P的乘积(即为动量矩)等于h/2π的整数倍,轨道才是可能的。即
根据玻尔的第二个假设,原子系统中电子从较高能级Wn,跃迁到较低能级Wk时,发出单色光,其频率为
电子在量子数为n的轨道上运动时,其原子系统的总能量Wn等于电
因为与能级Wk和Wn相应的量子数分别为k和n
所以有
由玻尔假设而推出的上式,当k为2时,与氢原子光谱巴耳末系的里德伯公式完全相同,且R的理论值可由式
算出,结果R=1.097373×107〔米〕-1,此值与经验公式中的R的实验值十分符合。故上式也为里德伯恒量提供了理论解释。根据玻尔理论,氢原子光谱的产生可解释如下:由式
可知,n越大,原子系统Wn的绝对值越小,但代数值越大,亦即电子离核越远,原子能量越大。电子在第一轨道亦即最内层轨道(n=1)时,能量最小,原子最为稳定,这种状态便是基态。量子数n大于1的各个状态,其能量均大于基态能量,这些状态都是激发态。当原子由基态跃迁到受激态时,原子必须吸收一定的能量。例如原子受到辐射的照射或高能粒子的撞击等,这时电子可由第一轨道跃迁到量子数较高的轨道上运动。处于受激状态的原子一般在10-8秒内自发地跃迁到能量较低的受激态或基态,在跃迁过程中,将发射一个一定频率的光子,其波数由
决定。由此可看出,巴耳末谱系是当氢原子中的电子从不同的较外层的轨道,跃迁到第二轨道时所发射的谱线。当电子跃迁到第一轨道时,应发出谱系:
跃迁到第三轨道时应发出的谱系:
而跃迁到第四第五轨道时应发出的谱系:
两谱系。这些谱系,的确都在氢原子光谱中观察到,而且有些还是在玻尔理论发表以后先从理论上计算出来,然后才通过实验找到的。在k=1时所表示的谱系在光谱的远紫外部分,称为赖曼系。k=3所表示的谱系在红外部分,称为帕邢系。k=4和k=5所表示的谱系也都在红外范围,分别称为布喇开系和普芳德系。在某一瞬时,一个氢原子只能发射一个一定频率的光子,这一频率相应于一条谱线,不同的受激氢原子才能发射不同的谱线。实验中观察到的是大量不同受激状态的原子所发射光的组合,所以能观察到大量的谱线。
【巴耳末公式】由于氢原子是诸原子中最简单的原子,物理学家曾对氢原子就理论上及实验上作了比较细致的研究,并以它为研究复发原子的基础。应用光谱方法是研究原子结构的一种重要手段。任何元素的原子,如令其在气态下发光,均随元素的不同而发射或吸收某一特定波长的光波。利用光谱仪,可以观察到各种波长不同的明线,称为光谱线。在1885年瑞典物理学家巴耳末发现,氢原子光谱可见光区的光谱线。排列是很有规律的,故其波长存在着一定的关系。设光波之频率为v,波长为λ,则波长的倒数1/λ为单位长度中的波数;巴耳末发现氢原子光谱中可见光区之明线与其波数之关系为:
此式称为巴耳末公式,R称为里德伯常数。
7,…。
【a粒子散射装置】早期的a粒子散射的实验装置如图5-6所示。R为放在铅室中的放射源,D1和D2为限束光栏(目的是为了形成细束),F为金属箔上通过来的位置,S为一荧光屏,M为放大镜。每当a粒子打到荧光屏上时,就有荧光闪烁,通过放大镜观察和计数荧光闪烁的次数,从而测定a粒子束在该处的强弱。S和M可以同步地在以F为圆心的圆弧上移动。在不同的散射角度上测a散射的粒子数是不相同的,利用这些散射粒子的能量和不同角度上的分布,可以研究不同的物质的性质。这种装置是很简单的。近期的a粒子散射实验装置中,多用加速器把a粒子(氦原子核)加速到一定能量并准直为细束,打到要研究的金属箔上,其探测装置,也多用半导体探测器代替荧光屏和放大镜。探测器可以,记录a粒子的数量,通过多道分析器还能定出各种a粒子的能量,测出按能量分布的能谱。a粒子的散射有的散射角大于90°,对于大于90°角的散射,常称之为“背散射”。对于要研究的样品不是薄片而是比较厚的样片,a粒子不能穿过,要研究其表面的性质。多用背散射进行研究。在背散射的分析中,可以用加速器来精确地控制a粒子的能量,使a粒子和靶核的作用在弹性碰撞范围之内,这就可以用经典理论来分析。利用加速器作a粒子源其主要优点是:(1)a粒子的能量单色性好。(2)a粒子的能量可调整到所需要的能量。 (3)可以做高能量的a粒子实验。大大改善了早期a粒子散射实验的精度。近年来,a粒子背散射技术有了更大的发展,特别是在半导体领域中,由于工业生产的发展迫切要求了解半导体表面1μm(微米)内杂质的纵剖面分布、晶体损伤和杂质原子的晶格定位等。背散射技术及沟道效应的应用,正好满足这些要求。此外这种分析方法是定量的,可靠的,对样品非破坏性的分析,尤其是对轻衬底中的重元素杂质的分析,因此这种分析技术得到了很快的发展,成为表面分析的有利工具。
【量子力学】它是研究微观粒子(如电子、原子、分子等)运动规律的理论。原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。大量的实验事实和量子论的发展,表明微观粒子不仅具有粒子性,同时还具有波动性(参见波粒二象性),微观粒子的运动不能用通常的宏观物体运动规律来描写。德布罗意、薛定谔、海森堡,玻尔和狄拉克等人逐步建立和发展了量子力学的基本理论。应用这理论去解决原子和分子范围内的问题时,得到与实验符合的结果。因此量子力学的建立大大促进了原子物理。固体物理和原子核物理等学科的发展,它还标志着人们对客观规律的认识从宏观世界深入到了微观世界。量子力学是用波函数描写微观粒子的运动状态,以薛定谔方程确定波函数的变化规律,并用算符或矩阵方法对各物理量进行计算。因此量子力学在早期也称为波动力学或矩阵力学。量子力学的规律用于宏观物体或质量和能量相当大的粒子时,也能得出经典力学的结论。在解决原子核和基本粒子的某些问题时,量子力学必须与狭义相对论结合起来(相对论量子力学),并由此逐步建立了现代的量子场论。
【海森堡】(1901~1976)德国物理学家,因创立矩阵力学等成就而获1932年诺贝尔物理学奖。26岁任莱比锡大学教授。1928年提出把量子力学应用于金属内部电磁的强磁体理论。1929年与泡利一起提出量子场论作为电磁场与电子相互作用的理论。在查德威克发现中子后,他又建立了把中子看作原子核结构要素的结构理论,继续从事量子物理学的研究。1941年任伯林大学教授和凯泽·威廉研究所所长。1943年提出S矩阵理论。第二次世界大战期间领导德国原子能利用事业。战后被俘往美国。1946年返回德国后,任普朗克物理研究所所长兼哥廷根大学教授,从事基本粒子研究。1958年与泡利一起研究基本粒子的统一场论,提出“元物质”理论,1967年发表《基本粒子统一场论》。著有《量子论的物理学基础》(1930年)、《自然科学基础的变化》(1935年)、《原子核物理》(1943年)、《物理学与哲学》。
【薛定谔】(1887~1961年)生于维也纳。理论物理学家。1910年取得维也纳大学博士学位。先后在维也纳,苏黎世等地任教。1926年将法国人德布罗意的物质波观念用数学表示,得到量子力学中最基本的薛定谔 方程式,因而获1993年诺贝尔物理学奖。1928年继普朗克退休出任伯林大学物理学系主任。由于纳粹党得势,1933年离德赴美国牛津之一学院任客座教授。1936年回奥国任大学教授,至奥国被纳粹德国合并后,先短期访问美国,后长期定居爱尔兰,1940年任爱尔兰皇家学院教授及伯林高等研究院教授。曾试图推广爱因斯坦的重力场论到电磁场,并尝试对生命现象用纯物理观念解释。1944年著《什么是生命》一书。1938年曾经意大利到美国,任达布林研究所所长,在此期间曾从事波动力学应用问题的研究,还从事物理学基础和物理学哲学问题的研究,由他建立的薛定谔方程是量子力学中描述微观粒子运动状态的基本定律,在粒子运动速度远小于光速的条件下适用。它在量子力学中的地位大致相似于牛顿运动定律在经典力学中的地位。
【狄拉克】1902年生,英国理论物理学家,原在布里斯托大学学习工程,后兴趣转到物理而在剑桥大学获物理学博士学位。1933年31岁时以对量子力学的贡献荣获诺贝尔物理学奖(与薛定谔共享)。1925年海森堡和薛定谔创立量子力学,狄拉克将相对论引进量子力学,写下
等。并预测及粒子的存在,此预测1931年被美国人安德生在宇宙射线中发现。狄拉克是量子辐射理论的开创者,又与费米分别发现费米,狄拉克统计律,并预测磁子的存在,提出了宇宙尺度中重力常数随时间变化的论述。1930年初版的《量子力学原理》是量子力学的标准教科书之一。
【薛定谔方程】薛定谔方程式为量子力学中粒子运动的基本方程式,但是这一理论假定粒子运动速度比光速小得多,因此它是非相对论性的。理论的基本点是一物理系统中的特定能量,可用一波动方程求出。此方式式的形式为
此方程也常称为薛定谔波动方程,它描写子状态随时间的变化。它反映了微观粒子的运动规律。上式也常写为
动量和能量的关系为
波函数是平面波:
它是薛定谔方程的解,我们可以由解来反推方程,即
三式相加,得
利用自由粒子的能量和动量的关系式:
用在波函数上的算符相当:
量和动量的关系是
用上述与能量和动量相对应的算符代替E和P,并在等式两边乘上粒子的波函数ψ(r,t)便得到
这就是著名的薛定谔方程式,在这个方程式问世以后不久,就被成功地用于解决许多原子和分子物理学的问题,并促使有关学科向前迈进了一大步。
【物质波】也称为“德布罗意波”或“实物波”对微观粒子所具有的波动性的描述。由法国物理学家德布罗意在1924年首先提出的。他把当时已发现的关于光的波粒二象性这一事实加以推广,提出一切微观粒子也都具有波粒二象性的论点。他认为19世纪在对光的研究上,只重视光的波性,忽视了光的微粒性;而在对实体的研究上,则过分重视了实体的微粒性,而忽略了实体的波性。因此他提出了微观粒子也具有波性的假设。德布罗意把粒子和波通过下面的关系联系起来:粒子的能量E和动量P与平面波的频率γ和波长λ之间的关系正象光子与光波的关系一样,即
ν=E/h
λ=h/P
且平面波沿着粒子运动方向传播(h为普朗克常数)。如电子衍射实验完全证实了物质波的存在,它成为建立量子力学的重要基础之一。按照德布罗意假设,粒子以速度v运动时,相应于这些粒子的平面单色波的波长是
如果v<<c,那末
再如,电子经电场加速(加速电位差为u)后,电子的速度将由关系式
得
将h=6.62×10-34〔焦耳〕〔秒〕,e=1.60×10-19〔库仑〕,m0=9.11×10-31〔公斤〕等数据代入后,得
由此可知,假如用150〔伏特〕的电位差所加速的电子,物质波的波长为10-10米,与伦琴射线(x射线)的波长的数量级相同;而当u=10000〔伏特〕时,λ=0.122×10-10米。所以这种物质波的波长是很短的。我们知道,光学仪器的分辨率与光的波长成反比,电子显微镜的放大率,远大于光学仪器的放大率,就是因为电子的物质波(德布罗意波)的波长,远较可见光波长为短的缘故。这也充分证明物质波是确实存在的。
【相对论】相对论是关于物质运动与时间空间关系的理论。它是现代物理学的理论基础之一。相对论是本世纪初由爱因斯坦等在总结实验事实(如迈克耳孙—莫雷实验)的基础上所建立和发展。在这以前,人们根据经典时空观(集中表现为伽利略变换)解释光的传播等问题时,导致一系列尖锐的矛盾。相对论针对这些问题,建立了物理学中新的时空观和高速物体的运动规律,对以后物理学的发展有重大作用。相对论分为狭义相对论和广义相对论两大部分。1905年建立的狭义相对论的基本原理:(1)在任何惯性参考系中,自然规律都相同,称为相对性原理。(2)在任何惯性系中,真空光速c都相同,即光速不变原理。由此得出时间和空间各量从一个惯性系变换到另一惯性系时,应该满足洛伦兹变换,而不是满足伽利略变换。并由此推出许多重要结论,例如:①两事件发生的先后或是否“同时”,在不同参照系看来是不同的(但因果律仍然成立)。②量度物体的长度时,将测到运动物体在其运动方向上的长度要比静止时缩短。与此相似,量度时间进程时,将看到运动的时钟要比静止的时钟进行得慢。③物体质量m随速度v的增加而增大,其关系为
m0为静止时的质量,称为静止质量。④任何物体的速度不能超过光速c。⑤物体的质量m与能量E之间满足质能关系式E=mc2。以上结论与目前的实验事实符合,但只有在高速运动时,效应才显著。在通常的情况下,相对论效应极其微小,因此经典力学可认为是相对论力学在低速情况下的近似。在1916年又建立了广义相对论,其基本原理:(1)广义相对论原理,即自然定律在任何参考系中都可以表示为相同数学形式。(2)等价原理,即在一个小体积范围内的万有引力和某一加速系统中的惯性力相互等效。按照上述的原理,万有引力的产生是由于物质的存在和一定的分布状况使时间空间性质变得不均匀(所谓时空弯曲);并由此建立了引力场理论;而狭义相对论则是广义相对论在引力场很弱时的特殊情况。从广义相对论可以导出一些重要结论,如水星近日点的进动规律;光线在引力场中发生弯曲;较强的引力场中时钟较慢(或引力场中的光谱线向红端移动)等。这些结论和后来的观测结果基本上相符合。近年来,通过测量雷达波在太阳引力场中往返传播在时间上的延迟,以更高的精密度证实了广义相对论的结论。相对论,具有重要的历史意义,但许多问题仍有待研究。
【原子物理学】物理学的一个部门。是研究原子和分子结构及其运动规律的学科。近代物理学主要是以原子物理学的研究为基础,从微观的本质阐明聚集态物质的性质,同时深入原子的内部领域中,阐明原子核及其基本粒子的属性。原子物理学主要研究的对象包括:原子和分子的基本结构,如各种原子模型,核外电子的分布规律;各种发射和吸收光谱;谱线的强度、分布规律及其精细结构等;原子的激发和电离;以及X射线的产生和特性等。原子物理学在本世纪初开始得到迅速发展,它的早期研究成果成为建立量子力学的重要基础,并进一步推动了原子核物理、固体物理等许多科学的发展;目前它的研究在理论和实验上都已达到相当精确的程度,并得到广泛应用。它是近代物理学的基础之一。
【玻恩】 Born, Max(1882~1970年)德国理论物理学家。从事过相对论和晶格力学的研究。1912年与卡尔曼一起提出了采用晶格理论解释固体比热的量子理论论文。1915年写了《晶格的动力学》。和约尔丹、海森堡一起创立了矩阵力学。由于对波函数的概率(几率)解释而获得1954诺贝尔物理学奖。
【几率】也称为“概率”和“或然率”,是概率论中最基本的概念。在社会和自然界中,某一类事件在相同的条件下可能发生也可能不发生,这类事件称为“随机事件”。如掷骰子,设骰子落地后每一面朝上的可能性均相同。即1、2、3、4、5、6朝上的可能性是一样的,而出现六个数字中的每一个数字都是随机事件。再如一只口袋装两个黑球,一个白球和一个红球,这四个球的大小、形状、重量完全一样,从口袋中任取一球,所取得的是红球也是一个随机事件。不同的随机事件发生的可能性的大小是不相同的,几率就是用来表示随机事件发生的可能性大小的一个量。很自然地把必然发生的事件的几率规定为1,并把根本不可能发生的事件的几率规定为零,而一般随机事件的几率是介于零与1之间的分数,例如,在上面的第一个例子中,出现,1,2,3,4,5,
【电子云】描写原子或分子中电子在原子核外围各区域出现的几率的状况,为直观起见,把电子的这种几率分布状况用图像表示时,以不同的浓淡程度代表几率的大小,这种图像所显示的结果,有如电子在原子核周围形成云雾,故称“电子云”。在距原子核很远的地方,电子出现的几率几乎等于零,意味着不可能在那里发现电子。有些非常靠近核的区域其几率也是零,也是无法发现电子的区域。
【亚稳态】某些原子有一些特殊激发态的能级,原子处于这些激发态的能级上时,能停留比较长的时间,比处于一般激发态的时间最多可长10多万倍,这种特殊的激发态叫做“亚稳态”。例如有的原子的亚稳态上,电子可停留10-3秒,而电子在氢原子的激发态上只停留10-8秒。具有亚稳态的原子很多,如氖、钕等。
【粒子数反转】在通常情况下,处于低能级E1的原子数大于处于高能级E2的原子数,这种情况得不到激光。为了得到激光,就必须使高能级E2上的原子数目大于低能级E1上的原子数目,因为E2上的原子多,发生受激辐射,使光增强(也叫做光放大)。为了达到这个目的,必须设法把处于基态的原子大量激发到亚稳态E2,处于高能级E2的原子数就可以大大超过处于低能级E1的原子数。这样就在能级E2和E1之间实现了粒子数的反转。在工作物质处于谐振腔内时,只要有能量为hv=E2-E1的光子能引起腔内谐振,就可以得到激光。实现粒子数反转的工作物质是制造激光器所不能缺少的。例如,氦氖激光器中,通过氦原子的协助,使氖原子中的两个能级实现粒子数反转而获得激光。
【激光器】也称为“光激射器”或“莱塞”。利用受激辐射原理使光在某些受激发的工作物质中放大或发射的器件。用电学、光学及其他方法对工作物质进行激励,使其中一部分粒子激发到能量较高的状态中去,当这种状态的粒子数大于能量较低状态的粒子数时,由于受激辐射作用,该工作物质就能对某一定波长的光辐射产生放大作用,也就是当这种波长的光辐射通过工作物质时,就会射出强度被放大而又与入射光波位相一致、频率一致、方向一致的光辐射,这种情况便称为光放大。激光器一般由三个部分组成:(1)能实现粒子数反转的工作物质。例如氦氖激光器中,通过氦原子的协助,使氖原子的两个能级实现粒子数反转;(2)光泵:通过强光照射工作物质而实现粒子数及转的方法称为光泵法。例如红宝石激光器,是利用大功率的闪光灯照射红宝石(工作物质)而实现粒子数反转。造成了产生激光的条件;(3)光学共振腔:最简单的光学共振腔是由放置在氦氖激光器两端的两个相互平行的反射镜组成。当一些氖原子在实现了粒子数反转的两能级间发生跃迁,辐射出平行于激光器方向的光子时,这些光子将在两反射镜之间来回反射,于是就不断地引起受激辐射,很快地就产生出相当强的激光。这两个互相平行的反射镜,一个反射率接近100%,即完全反射。另一个反射率约为98%,激光就是从后一个反射镜射出的。激光器的种类很多,如氦氖激光器、二氧化碳激光器,红宝石激光器、钇铝石榴石激光器,砷化镓激光器,染料激光器,氟化氢激光器和氩离子激光器等等。
【固体激光器】这类激光器所采用的固体工作物质,是把具有能产生受激发射作用的金属离子掺入晶体而制成的。在固体中能产生受激发射作用的金属离子主要有三类:(1)过渡金属离子(如Cr3+);(2)大多数镧系金属离子(如Nd3+、Sm2+、Dy2+等);(3)锕系金属离子(如U3+)。这些掺杂到固体基质中的金属离子的主要特点是:具有比较宽的有效吸收光谱带,比较高的荧光效率,比较长的荧光寿命和比较窄的荧光谱线,因而易于产生粒子数反转和受激发射。用作晶体类基质的人工晶体主要有:刚玉(AL2O3)、钇铝石榴石(Y3Al5O12)、钨酸钙(CaWO4)、氟化钙(CaF2)等,以及铝酸钇(YAlO3)、铍酸镧(La2Be2O5)等。用作玻璃类基质的主要是优质硅酸盐光学玻璃,例如常用的钡冕玻璃和钙冕玻璃。与晶体基质相比,玻璃基质的主要特点是制备方便和易于获得大尺寸优质材料。对于晶体和玻璃基质的主要要求是:易于掺入起激活作用的发光金属离子;具有良好的光谱特性、光学透射率特性和高度的光学(折射率)均匀性;具有适于长期激光运转的物理和化学特性(如热学特性、抗劣化特性、化学稳定性等)。晶体激光器以红宝石(Al2O3:Cr3+)和掺钕钇铝石榴石(简写为YAG:Nd3+)为典型代表。玻璃激光器则是以钕玻璃激光器为典型代表。
【液体激光器】液体激光器所采用的激光工作物质主要包括两类:一类是有机染料溶液,另一类是含有稀土金属离子的无机化合物溶液。有机染料液体激光器是应用较普遍的一类液体激光器,目前已在数十种有机荧光染料(如若丹明,荧光素、香豆素、吖定等)溶液中实现激光发射作用。一般采用光泵激励,光泵源可以是脉冲放电灯,也可以是由其他激光器发出的一定波长的激光辐射。这一类激光器的特点是输出波长覆盖的光谱区域较广、可调谐和器件效率较高。
【气体激光器】这类激光器采用的气体工作物质,是所使用的工作物质中数目最多、激励方式最多样化、激光发射波长分布区域最广的一类激光器。气体激光器所采用的工作物质,可以是原子气体、分子气体和电离化离子气体,为此,把它们相应的称为原子气体激光器、分子气体激光器和离子气体激光器。在原子气体激光器中,产生激光作用的是没有电离的气体原子,所采用的气体主要是几种惰性气体(如氦、氖、氩、氪、氙等),有时也可采用某些金属原子(如铜、锌、镉、铯、汞等)蒸汽,或其他元素原子气体等。原子气体激光器的典型代表是氦一氖气体激光器。在分子气体激光器中,产生激光作用的是没有电离的气体分子,所采用的主要分子气体工作物质有CO2、CO、N2、H2、HF和水蒸气等。分子气体激光器的典型代表是二氧化碳(CO2)激光器的氮分子(N2)激光器。离子气体激光器,是利用电离化的气体离子产生激光作用,主要的有惰性气体离子和金属蒸汽离子,这方面的代表型器件是氩离子(Ar+)激光器、氪离子(Kr+)激光器以及氦一镉离子激光器等。
【半导体激光器】这是以一定的半导体材料做工作物质而产生受激发射作用的器件。其工作原理是,通过一定的激励方式,在半导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转关态的大量电子与空穴复合时,便产生受激发射作用。半导体激光器的激励方式主要有三种,即电注入式、光泵式和高能电子束激励式。电注入式半导体激光器,一般是由GaAS(砷化镓)、 InAS(砷化铟)、 Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射。光泵式半导体激光器,一般用N型或P型半导体单晶(如GaAS、In、As、InSb等)做工作物质,以其他激光器发出的激光作光泵激励。高能电子束激励式半导体激光器,一般也是用N型或者P型半导体单晶(如PbS、CdS、ZbO等)做工作物质,通过由外部注入高能电子束进行激励。在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器。
【红宝石激光器】红宝石激光器的工作物质是红宝石棒。在激光器的设想提出不久,红宝石就被首先用来制成了世界上第一台激光器。激光用红宝石晶体的基质是Al2O3,晶体内掺有约0.05%(重量比)的Cr2O3。Cr3+密度约为,1.58×1019/厘米3。Cr3+在晶体中取代AL3+位置而均匀分布在其中,光学上属于负单轴晶体。在Xe(氙)灯照射下,红宝石晶体中原来处于基态E1的粒子,吸收了Xe灯发射的光子而被激发到E3能级。粒子在E3能级的平均寿命很短(约10-9秒)。大部分粒子通过无辐射跃迁到达激光上能级E2。粒子在E2能级的寿命很长,可达3×10-3秒。所以在E2能级上积累起大量粒子,形成E2和E1之间的粒子数反转,此时晶体对频率v满足
hv=E2-E1
(其中h为普朗克常数,E2、E1分别为激光上、下能级的能量)的光子有放大作用,即对该频率的光有增益。当增益G足够大,能满足阈值条件时,就在部分反射镜端有波长为6943×10-10米的激光输出。
【二氧化碳激光器】二氧化碳激光器是以CO2气体作为工作物质的气体激光器。放电管通常是由玻璃或石英材料制成,里面充以CO2气体和其他辅助气体(主要是氦气和氮气,一般还有少量的氢或氙气);电极一般是镍制空心圆筒;揩振腔的一端是镀金的全反射镜,另一端是用锗或砷化镓磨制的部分反射镜。当在电极上加高电压(一般是直流的或低频交流的),放电管中产生辉光放电,锗镜一端就有激光输出,其波长为10.6微米附近的中红外波段;一般较好的管子,一米长左右的放电区可得到连续输出功率40~60瓦。CO2激光器是一种比较重要的气体激光器。这是因为它具有一些比较突出的优点:第一,它有比较大的功率和比较高的能量转换效率。一般的闭管CO2激光器可有几十瓦的连续输出功率,这远远超过了其他的气体激光器,横向流动式的电激励CO2激光器则可有几十万瓦的连续输出。此外横向大气压CO2激光器,从脉冲输出的能量和功率上也都达到了较高水平,可与固体激光器媲美。CO2激光器的能量转换效率可达30~40%,这也超过了一般的气体激光器。第二,它是利用CO2分子的振动一转动能级间的跃迁的,有比较丰富的谱线,在10微米附近有几十条谱线的激光输出。近年来发现的高气压CO2激光器,甚至可做到从9~10微米间连续可调谐的输出。第三,它的输出波段正好是大气窗口(即大气对这个波长的透明度较高)。除此之外,它也具有输出光束的光学质量高,相干性好,线宽窄,工作稳定等优点。因此它在国民经济和国防上都有许多应用,如应用于加工(焊接、切割、打孔等),通讯、雷达、化学分析,激光诱发化学反应,外科手术等方面。
【染料激光器】是一种以染料为工作物质,用激光器为泵浦源的激光器。这种激光器输出激光的波长连续可调。因而人们可以得到所需要波长的激光。它具有高的输出功率和波长连续可调的特点,故此种激光器应用范围较广,目前使用不同的染料和泵浦源产生的激光波长已可覆盖(3200~12850)×10-10米的区间。连续染料激光的线宽已可压缩到1千赫以下。而脉冲染料激光的脉冲时间已可压缩到8×10-15秒。用于染料激光器的染料是有机大分子,分子量一般在几百。染料激光器按泵浦的方式可分为脉冲和连续运转两类。对于脉冲染料激光的形成过程为:未被泵浦的染料分子处于S0(v=0)能级。在泵浦光作用下,跃迁到S1(v=1,2,……)而后又很快通过振转能级间弛豫而到达S1=(v=0)能级。而因被激发的分子都聚集在S1(v=0)能级上。同时S0(v>0)上的分子由于同样的过程而聚集在S0(v=0)能级上,而S0(v>0)的各能级则是空的。这样,就在S1(v=0)和S0(v>0)各能级间形成粒子数反转,提供了高增益。这就使S1(v=0)和S0(v>0)间的光跃迁可能形成激光振荡。由于下能级是S0(v>0)的一系列能级,一般能复盖几百厘米-1;所以在激光腔中加入色散元件就可选择激光波长,实现激光波长连续可调。由于S1有相当的宽度,所以激发谱很宽。当用激光来激发时,一种固定波长的激光也可用以激发多种染料。但是,染料激光器输出的激光波长一定比做为光泵的激光器的波长更长。
【原子核】简称“核”。原子的核心部分。类似球体,带正电。原子核是由质子和中子组成的。质子和中子统称为核子。核是质子和中子的紧密结合体。原子核占有原子质量的绝大部分,但它的直径不足原子直径的万分之一。由于质子带一个单位的正电荷,中子不带电,质子和中子的质量几乎相等,都等于一个质量单位,所以原子核的电荷数就等于它的质子数,原子核的质量等于它的核子数(即质子数和中子数的和)。
的中子,才能使质子和中子聚集在一起,组成稳定的原子核。对于质子数不多的核,只要有等量的中子,就能组成稳定的原子核。例如氦的原
子和8个中子,对于质子数超过20的稳定原子核内,中子数大于质子数。
都是不稳定的。现在已经知道的核超过1600种,其中约有300种是稳定的,其余的均是不稳定的。
【放射性】不稳定的原子核自发放出α、β、γ射线的现象。天然存在的放射性同位素能自发放出射线的特性,称为“天然放射性”。而通过核反应,由人工制造出来的放射性,称为“工人放射性”。放射性在工业、农业和医疗各方面的应用,具有极重要的价值和很广阔的前途。但人类或其他生物受到过量的放射性物质辐照时,可能引起各种放射性病或烧伤等,必须注意防护。
【贝克勒耳】Baekeland, Leo Hendrik(1852~1908年)法国物理学家。从1895年起一直研究磷光现象。在研究X射线的荧光作用时发现了不可见的辐射。1896年发现铀的放射性质,是科学实验中认识放射性的开端。贝克勒耳1903年获诺贝尔物理学奖。
【玛丽·居里】 Marie
Sklodowska Curie人们常称为“居里夫人”。(1867~1934年)法国物理学家、化学家。原籍波兰,姓斯可罗多夫斯卡。1891年去巴黎大学学习。1894年与皮埃尔·居里结婚。在1896年贝克勒尔发现含铀物质的自发放射现象之后,居里夫妇开始从事放射性物质的研究。1898年发现了新的放射性元素钚和镭。1902年提取出氯化镭结晶,测定了镭的原子量获得1903年诺贝尔物理学奖。居里去世(1906)后,居里夫人提取出纯镭元素,测定了它的各种物理化学性质。还测定了氢等元素的半衰期,并在此基础上整理出放射性元素蜕变的系统关系,又获得了1911年诺贝尔化学奖。并著有《放射性通论》、《放射性物质的研究》等,对原子核科学的发展起了不少推动作用。
【居里】 Pierre Curie比埃尔·居里(1859~1906年)。法国物理学家。早期的主要贡献为确定磁性物质的转变温度(居里点),建立居里定律和发现晶体的压电现象。后与居里夫人共同研究放射性现象,发现钋和镭两种天然放射性元素。荣获1903年诺贝尔物理学奖。
【同位素】同属一种元素(即核电荷数相同)但具有不同的质量数的原子。它们彼此之间的化学性质几乎相同,在周期表中占同一位置。每一种元素包括几种同位素。同位素的表示是在该元素符号的左上角(有时在右上角)注明质量数。需要时可同时在左下角(或右下角)注明核
性同位素及人工放射性同位素在内,已达2000种左右。
【放射性同位素】具有放射性的元素,叫做放射性同位素。根据放射性同位素的性质和特点,人们利用放射性同位素解决了很多技术上的问题,在工农业生产和医药卫生各方面都起着重要的作用:(1)利用射线的穿透性质来检查金属制品内部的缺损,测量物体的密度和厚度。例如,对金属板进行探伤时,就要选用穿透本领强的γ射线的同位素。如钴60或钽182都是放出γ射线的同位素。(2)利用射线的电离本领来消除工业上有害的静电积累。这时应用电离本领较大的β或α射线。(3)利用射线的生理效应来消毒杀菌和医治肿瘤。(4)示踪原子的应用。在物质中加入少量的放射性同位素而追踪探索,如用放射性同位素检漏、研究机械部件的磨损、分析农业上的肥效,炼钢中的去硫和去磷过程等。对于需要长时间的示踪工作,就要选择半衰期较长的同位素。(5)辐射育种和辐射保鲜等工作。
【α射线】也称“甲种射线”。是放射性物质所放出的α粒子流。它可由多种放射性物质(如镭)发射出来。α粒子的动能可达几兆电子伏特。从α粒子在电场和磁场中偏转的方向,可知它们带有正电荷。由于α粒子的质量比电子大得多,通过物质时极易使其中的原子电离而损失能量,所以它能穿透物质的本领比β射线弱得多,容易被薄层物质所阻挡。从α粒子的质量和电荷的测定,确定α粒子就是氦的原子核。
【β射线】也称“乙种射线”。它是由放射性原子核所发出的电子流。电子的动能可达几兆电子伏特以上,由于电子质量小,速度大,通过物质时不易使其中原子电离,所以它的能量损失较慢,穿透物质的本领比α粒子强。实质上它是高速运动的电子流。
【γ射线】γ射线与X射线、光、无线电波一样,为一种电磁辐射,是原子核内所发出的电磁波。原子核从能量较高的状态过滤到能量较低的状态时所放出的能量常以γ射线形式出现。γ射线也称为“丙种射线”。带电粒子的轫致辐射,基本粒子转化过程中发生的湮没,以及原子核的衰变过程中都产生γ射线。它的穿透本领极强。
【衰变】原子核由于放出某种粒子而转变成新核的变化叫做原子核的衰变。大量的同种原子核由于衰变过程,原状态的核数目不断减少,新核的数目不断增加。如α衰变、β衰变等。对个别核来说,这种衰变以一定的几率发生(见半衰期)。此外,不稳定的基本粒子转变为新粒子的过程也称为衰变。
【α衰变】不稳定的重原子核,自发放出α粒子的衰变叫做α衰变。例如,-238核放出α粒子变成钍-234核的衰变,即为α衰变,可用方程表示为
由此可见,α衰变的规律是:新核的质量数比原核的质量数减少4,新核的电荷数比原来核的电荷数减少2,所以新核在元素周期表中的位置要向前移两位。α衰变的半衰期与所放射的α粒子的能量密切有关,原子核发射出的α粒子能量越大,它的半衰期越短。在α衰变中往往有γ辐射伴随发生。
【β衰变】放射性原子核放射电子(β粒子)和中微子而转变为另一种核的过程。放出正电子的称为“正β衰变”,放射负电子的称为“负β衰变”。在正β衰变中,核内的一个质子转变成电子,在负β衰变中,核内的一个中子转变为质子。因为β粒子就是电子,而电子的质量比起核的质量来要小很多,所以一个原子核放出一个β粒子后,它的质量数不变。电子的质量数是零,电荷数是-1。可以用
可用方程表示为
由此可见,β衰变的规律是:新核的质量数不变,电荷数增加1,新核在元素周期表中的位置要向后移一位。β衰变中放出的电子能量是连续分布的,但对每一种衰变方式有一个最大的限度,可达几兆电子伏特以上。此外电子俘获也是β衰变的一种。
【半衰期】在放射性衰变过程中,放射性元素的核数减少到原有核数的一半时所需的时间。半衰期是放射性元素的一个特性常数,一般不随外界条件的变化,元素所处状态(游离态或化合态)的不同、或元素质量的多少而改变。每一种放射性元素都有一定的半衰期,不同的放射性元素,半衰期不同,甚至差别非常大。例如,氡-222变为钋-218的半衰期为3.8天,镭-226变为氡-222的半衰期为1620年,铀238变为钍-234的半衰期是4.5×109年。因此,放射性元素经过一个半衰期后其核数余存一半,经过两个半衰期后其核数余存四分之一。短的半衰期仅有几千万分之一秒。长者可达数亿年(如钍Th)的α衰变半衰期可达139亿年,(即1.39×1010年)。原子核的衰变规律是:N=N0e-λt,这里的N0是初始时刻(t=0)时的原子核数,λ为衰变常数,N为衰变后留下的原子核数。由此可以导出半衰期T和衰变常数λ的关系,即
故 T=ln2/λ=0.693/λ。
由元素的半衰期可以计算出岩石结构及其年龄。
【云室】在原子核物理研究中观测微观粒子径迹的仪器,由英国物理学家威尔逊于1911年发明。故又称为威尔逊云室。威尔逊云室的作用是以体中的离子作为气体的凝结核(凝结中心)。如果在云室中充满空气、水和酒精的饱和蒸气。若使云室中的主体突然膨胀而变冷,这时室中的蒸气达到饱和状态。此时如有带电粒子进入云室主体,在它经过的路程上产生离子时,则过饱和蒸气即在离子的周围凝成雾滴,在适当的照明下,就能看到或拍到粒子运动的径迹。根据径迹的长短、浓淡,以及在磁场中的弯曲程度等可以分辨粒子的种类和性质(如质量、电荷和能量)。通过间接的分析也可以测定不带电的粒子。这种云室有时也称为“膨胀云室”。威尔逊云室的示意图如图5-7所示。C是一个圆筒状的容器,里面盛有气体和水或任何液体的饱和汽。圆筒上面用一玻璃窗O封闭起来。活塞P能够在圆筒C内移动。当活塞P迅速下降时,气体绝热地膨胀,结果气体变冷,而形成汽体的过饱和状态。如果将极少量的放射性制品R引入容器中,则放射性物质放射出的粒子在自己的轨道上使气体电离,因而使粒子的路径上形成雾滴的凝聚,致使轨迹为可见的。
【计数器】是一种常用的原子核辐射探测器。适用于不同的用途,有各种不同的结构和型式。常见的一种是在一玻璃管内,装一个金属圆筒作为阴极,在其轴线上有一细钨丝作为阳极,管内充以惰性气体(如氩)和少量有机气体或卤素气体(如乙醚、溴等),并在两极之间加上适当的电压。如果有带电粒子或γ光子射入管内使气体分子电离,所产生的电子就向阳极运动,同时在强电场的加速下,与更多的气体分子和碰撞,并使它们电离而产生大量电子。这些电子由阳极收集后在外部电路中形成一个脉冲电压,记录这种脉冲发生的次数,便可获知射入管内的粒子数目。此种计数器应用很广。另一种是正比计数器,结构和前者相似,但所加电压较低,产生的脉冲电压大小与入射粒子的能量近似成正比,主要应用在科学研究中。
【电离室】一种测量电磁辐射或粒子流强度或测量短射程带电粒子(如α粒子)能量的仪器。在一个充有气体(如氩、空气等)的密封容器内装两个电极,其上加有几百伏特的电压。(1)当带电粒子、X射线或γ射线进入容器后,使电极间的气体电离而产生正负离子,这些离子分别向两极运动而形成电流。用测量仪器测出电流的大小,就可以推知粒子流的强度或物质所受X射线或γ射线照射的剂量。这种是“电流电离室”或“累积电离室”。(2)当短射程带电粒子进入后,将在两极间消耗其全部能量于使气体电离,所产生的正负离子分别到达两极,使它们间的电势发生改变(“脉冲电压”)。测量出脉冲电压的大小和数目,就可推知带电粒子的能量和数量。这种是“脉冲电离室”。
【核乳胶】记录带电微观粒子运动径迹的一种特制照相乳胶。这种方法,是根据带电粒子穿过照相乳胶时,使乳胶粒子内的溴化银分解。因此,在厚的照相乳胶层中,显影像后得到的粒子轨道痕迹是一个跟一个的黑点。核乳胶层比一般照相乳胶层厚,溴化银的含量更多,且颗粒细,分布均匀。作为一种核物理实验中的径迹探测器、核乳胶的优点是体积小、轻便、能将高能粒子的径迹永久保存等。故常用于高空宇宙射线和基本粒子的研究方面;其缺点是根据径迹测量粒子能量时精确度较低。核乳胶经适当处理后,也可用来记录不带电粒子,如中子等。
【质子】质子是带正电的基本粒子,常用符号P来表示。质子是氢的原子核,也是其它任何原子核的组成部分。原子核中所含质子的数目就是该核的原子序数Z。质子的静止质量为1.673×10-27kg(千克),电量为1.602×10-19C(库仑),半径约为0.8×10-15m(米)。质子的自旋量子数(简称自旋)为1/2。1919年英国物理学家卢瑟福用天然放射性产生的α粒子轰击氮的原子核,核反应方程为
这是第一次用人工方法使原子核发生变化,实验中产生的新粒子
但所带电荷符号相反。质子和反质子相遇时发生质子对“湮没”而转变为其他的基本粒子。我们说,质子是氢的原子核,是指普通氢(即只含一个质子而没有中子的核)。氢还有两种同位素。即氘(重氢)和氚(超
表示。显然氘核中包含1个质子和1个中子。而氚核中包含1个质子和2个中子。
【布拉凯特】Blaskett, Ratrik Maynard Stuart(1897~1974年)英国物理学家。1948年诺贝尔物理学奖的获得者。他用威尔逊云室观测和研究α粒子轰击氢、氦、氮等元素原子核的情况,并成功地从氮原子核中击出质子。还从事宇宙射线中高能粒子的研究。证明了C·D·安德森所发现的正电子。第二次世界大战期间从事军事技术研究以对付德国的U型导弹。
【闪烁计数器】由透明荧光体和光电倍增管以及有关电子仪器组成的记录原子核辐射的仪器。当一个粒子射入荧光体,其能量被吸收后,荧光体便发出一次为时极短(无机荧光体约为10-6~10-7秒;有机的约10-8~10-9秒)的闪光,再经光电倍增管转变一个电脉冲,最后由电子仪器记录下来。采用的荧光物质多种多样,有某些无机或有机化合物的单晶、塑料、有机溶液等。目前常用的荧光体是单晶体。其光学性能较好。且它们对于自己的特征荧光都是透明的。常用的无机晶体有碘化钠(加铊)、钨酸镉、钨酸钙等,有机晶体有萘、蒽、反式 等。射线产生荧光的过程基于射线对物质中电子的激发。电子吸收射线的能量以后跃迁到较高的激发能级,电子从激发能级恢复到正常状态时可能发射荧光,也可能以别的方式把能量放出。在荧光物质中前者的几率大。闪烁计数器的主要优点是其分辨时间短和效率高。根据脉冲的大小,还可用以测定粒子的能量。
【半导体探测器】近些年来发展的一种新型核辐射探测器。它的特点是能量分辨本领好,分辨时间快。常用的半导体探测器有两种类型:(1)金硅面垒型,它是在一块n型硅单晶片上喷涂一层金膜,在金硅交界面附近形成一个高阻区。也就是形成一个非常薄的P型反型层,接线从底面和靠近交接部分的表面引出。形成一个半导体二极体。如果加上一个方向偏压,在二极体交接部分的电场使得只有微弱的电流能通过。在靠近交接部分的两边有一个所谓耗尽层的区域,所有反向偏电压都加在这个区域。耗尽层是半导体射线探测器的灵敏部分,如果射线穿过这部分,产生载流子,它们就会被收集,和气体电离室的情形一样。(2)锗(或硅)—锂漂移型探测器。它是使适量的锂均匀地漂移进一块P型锗(或硅)单晶,形成高阻区。使用时探测器接上反向电压,当有射线进入高阻区时,损耗能量产生电子—空穴对,在电场作用下,电子、空穴被收集,就有电信号输出,再用电子仪器记录。其中金硅面垒探测器适用于测量带电粒子。锗(或硅)—锂漂移探测器测量γ射线、X射线等的能量分辨率特别好,但必须要在低温(77K)真空条件下工作。一般必须用液态氮冷却真空条件下工作。一般必须用液态氮冷却条件下使用。近代也曾把此种探测器放在火箭中升到太空做宇宙射线的探测和研究,在化学方面用来做化学分析后的放射性物质的精密测定。由于半导体探测器的体积小,将来会在医学上得到广泛的应用。
【核反应】利用天然放射性的高速粒子或利用人工加速的粒子去轰击原子核时,由于相互作用而产生各种变化的过程叫做核反应。在核反应过程中将有能量放出或吸收。所放出或吸收的能量叫做反应能。放出能量的核反应叫做放能反应,吸收能量的核反应叫做吸能反应。历史上
轰击氮,产生了
的核反应。现在利用各种加速器和原子核反应堆,能进行上万种核反应,由此获得了千余种放射性同位素和各种介子、超子、反质子、反中子等基本粒子。任何核反应的过程都遵守能量、动量、质量和电荷等守恒定律。这方面的研究对于了解原子核的结构,基本粒子间的相互作用。以及探索新的能源等方面都有重大意义,通过裂变反应而释放出来的巨大能量在技术上已能加以控制和利用。要发生吸能反应,入射粒子的能量必须大于阈能。阈能的值大于反应能。如果入射粒子的能量小于阈能,吸能反应就不能发生。反应能的量值和符号,可以按爱因斯坦相对论的质能关系式加以确定。如果引起反应的粒子和靶核的静止质量分别为Ma和Mx,反应后产物的静止质量分别为Mb和My,根据质量守恒定律应满足下式:
Mx+Ma=My+Mb+△m
如果△m>0,则在反应中是放出能量的。反之,当△m<0时,反应将吸收能量。反应中放出或吸收的能量为
△E=△mc2。
【约里奥-居里】 Joliot-Curie, Jean Frederic(1900~1958年)法国物理学家。物理学家居里夫妇的女婿。对原子核物理学有重要贡献。1932年和他的妻子伊丽夫-居里(1897~1956年)合作,用放射性元素钋(Po)所产生的α射线轰击铍、锂、硼等元素,发现了前所未见的穿透性强的辐射,后经查德威克的研究,确定为中子。1934年在用α粒子轰击铅、硼时首次产生了人工放射性物质,并对裂变现象进行过研究。他们夫妇曾长期领导法国原子能委员会,并领导建成了法国第一个原子核反应堆(1948年)。
【查德威克】 Chad Wick, Sir James(1891~1974年)英国物理学家,因发现中子(1932年)而获1935年诺贝尔物理学奖。1930~1932年,约里奥-居里夫妇用α粒子轰击铍等轻原子核时发现了穿透力极强的射线。查德威克重复这一实验并证明这是与质子质量相仿但不带电的粒子,由此而开创了原子核物理学的新时代。曾作为英国代表参加在美国原子弹的研制工作。
核的组成部分。它的静止质量为1.675×10-27千克,其半径为0.8×10-15米,与质子的大小类似。中子是1932年英国物理学家查德威克在做了用α粒子轰击硼的实验中发现的,即
单独存在的中子是不稳定的,平均寿命约15.3分,然后就衰变成质
中子不带电,易于进入原子核内部,因此在原子核物理研究中,常利用中子来引起核反应。原子核由中子和质子组成,在原子核内的中子是稳定的。中子的自旋量子数为1/2。利用中子作为入射粒子也可产生放射性同位素,例如。
6C14是放射性的。它是由氮被中子照射而产生的核反应,制造出6C14放射性同位素。中子的用途很多。在核裂变中必须由中子引爆。可以用各种类型的加速器加速带电粒子并使这些加速粒子轰击适当的靶而得到一定产额的中子;也可以用天然放射物质放出的α粒子轰击Be而制造天然放射中子的中子源。如Ra-Be中子源和Po-Be中子源。它们是适当比例的镭和铍或钋和铍混在一起,用适当的容器封装而成。实际上就是用镭或钋放射的α粒子轰击铍而产生核反应而放出中子。
【射线的防护】α粒子、β射线、γ射线以及中子,是核物理实验中经常要遇到的,在研究核反应,原子核的结构等方面,它们也是相当重要的实验手段。但是,它们对人的身体是有害的,因此在使用、接触这些射线时必须加以屏蔽和防护。然而由于各种射线的性质不同,采用的防护手段和材料各有不同。(1)对α粒子的防护:由于α粒子较大,又带有两个电子电量的电荷,因此,它的穿透本领较弱。甚至一张纸就能把它挡住,但它的电离本领较大。故在使用α放射源,或接触α射线时,主要不是考虑外防护,而是不要使α粒子进入体内。因为人的皮肤可使α粒子进入不了体内。但如果实验完不洗手就吃东西,使很多α粒子进入体内,它会使食道内壁电离而受到严重的损伤。因此,使用α放射源,要防止通过口或伤口处进入体内,不造成伤害。(2)对β射线的防护: β射线是高速运动的电子,它的穿透本领较强,但不如γ射线和中子的穿透本领强。对β射线的防护要注意它的次级效应。这是因为,高速运动的电子,与物质相互作用时,产生轫致辐射(γ光子)。特别是与重粒子相互作用,轫致辐射相当厉害。例如,在接触β射线时,为保护眼睛,应该用普通的玻璃眼镜,不能用铅玻璃或较重物质的眼镜。因为较重的物质与β射线作用,在镜片上产生非常强的轫致辐射,虽然β粒子被防护了,但其次级的射线,将会伤害眼睛。(3)γ射线的防护:对γ射线主要是防护外照射。一般采用较重的物质,如铅等来防护。一般Co0γ辐射源,都放置在铅罐中。(4)对中子的防护:在使用中子放射源时,要特别注意。因为中子通过人体时,和人体中的一些元素发生核反应,有可能产生放射性同位素、造成内部照射,而中子的穿透本领极强。这是因为,中子不带电,不受原子核库仑场的作用。它可在原子之间的空隙中直穿而过。它和较重原子核的作用,能量减少很小。故在防护中子时均采用两层防护。内层采用较轻的物质,使和中子在碰撞中迅速减慢,使较快的中子变成慢速中子,然后再用较重的物质将其屏蔽。达到安全防护的目的。在运送中子源的罐中,内层多用石腊外部用铅或钢罐。
【辐射剂量】当辐射通过物质时,物质就要吸收辐射能。剂量就是单位质量被照射的物质所吸收辐射能的数值即
式中D为辐射剂量,E为被照射物质吸收的辐射能,M为物质的质量。辐射能在物质中的吸收,是由于辐射与物质原子中的电子相互作用而引起的,因此在估计单位质量被照射的物质所吸收的能量时,可认为只决定于电子在原子中的结合能,以及一克物质中所含有的原子数目。由此可见,同一辐射对不同的物质其辐射剂量不相同。因为剂量是以单位物质吸收能量多少来定义的。剂量不反映放射性强度的大小。辐射剂量的常用单位是拉德(rad)和伦琴(R)。一克物质吸收辐射能量为10-5焦耳时,该物质的吸收剂量是lrad。注意,拉德的数值与被照射物质的性质无关。只要1克物质吸收了10-5焦耳的能量其吸收剂量即为lrad。伦琴则不然,它的定义是:使射线通过0.001293克空气,如果在其中由电离而产生正负离子各为一个静电单位的电量,那么这些空气吸收的剂量为1R。0.001293克的空气是在标准状况下(0℃760mmHg)的一立方厘米干燥空气的质量。因为一个离子的电量的绝对值为4.8×10-10静电单位,因此要积累起一个静电单位的电量,必须在每立方厘米
谱范围内,空气的电离能可取作32.5电子伏特,故一伦琴相当于吸收的能量为
2.083×109×32.5=0.68×1011电子伏特/立方厘米空气所以 1伦琴相当于
0.68×1011×1.6 × 10-19焦耳/立方厘米
空气=0.11×10-7焦耳/cm3
一电子伏特为1.6×10-19焦耳。显然1克空气所吸收的辐射能为
=
84×10-7焦耳/克(空气)
故1伦琴实际上是1克空气从射线吸收84×10-7焦耳能量。
【示踪原子】示踪原子是将一种稳定的化学元素和它的具有放射性的同位素混合在一起。当它们参与各种系统的运动和变化时,由于放射性同位素能发出射线,测量这些射线便可确定它的位置与分量,只要测出了放射性同位素的分布和动向,就能确定稳定化学元素的各种作用。例如,将放射性磷混合在磷肥中使用,根据放射性磷在植物中的分布,便可了解植物对磷吸收的实际情况。示踪原子在生物学、医学、工业和农业等方面都有极为广泛的用途。(1)在医学上的用途:在医学上利用示踪原子主要是为了诊断病情。例如,放射性的碘化钠在人体内的作用与通常的碘化钠完全相同。这些碘元素集中在甲状腺,然后转变为甲状腺荷尔蒙,另外有些含放射性的原子能够附在骨髓、红血球、肺部、肾脏或留滞在血液中,可被适当的仪器探测出来。作为检查各部位病情的依据。(2)在工业上的应用:有些工业部门,在很多操作过程中,都应用同位素。如,在石油工业中,探测石油时,将放射性的针放入试验井或插进地中,然后再测量放射线,穿过不同的岩石被散射的情况,记录下来各处所测的辐射线,据此画出地层的剖面图。此图可告诉地质学家在何处打井较为适当。(3)在化学上的应用:在化学中的某些问题必须使用示踪原子方能解决,例如,金属离子在其盐类的溶液中自身扩散的现象,不能由其他方法加以研究。有些问题虽然原则上并不一定非要使用示踪方法,不过为了方便,也常使用示踪方法。示踪原子的应用有特殊的优点:(1)灵敏度极高。通常最灵敏的天平可以称出10-6克,最灵敏的光谱分析法可以鉴定10-9克的物质,而用示踪原子法能检查出10-14~10-1克的放射性物质,这是任何化学分析所不及的。(2)容易辨别,手续简单。用示踪原子法可以节省很多繁复的分析工作。(3)可以揭示其他方法在目前还不能发现的事实,从而得出新的正确的结论。例如用示踪原子测定平衡状态下物质运动的规律、物质的扩散等。
【中子的发现】1930年发现α粒子轰击铍(4Be9)时,产生穿透本领非常大的辐射。当时曾认为这种辐射是能量很高的γ射线。因此被误认为α粒子轰击铍的反应是
4Be9+2He4→6C13→6C13+hν
式中6C13为碳同位素6C13的激发核。测定发生的射线在铅中的吸收,证明γ光子的能量应该为 7MeV(兆电子伏特)。 1932年,伊伦·约里奥-居里和约里奥-居里发现如果使铍射线(α粒子轰击铍放出的射线)通过石蜡板,则其电离作用大大增加。这种效应的产生是由于铍射线由石蜡中击出质子所致。铍射线从石蜡中击出的质子,在空气中的射程为40厘米,大约相当于5兆电子伏特的能量。若假定质子是由于与γ光子作用,发生弹性碰撞而被加速,则γ光子应该具有大约55兆电子伏特的能量,此值比由铅吸收得到的7兆电子伏特大很多。55兆电子伏特这个值也不与根据反应式中的质量亏损相符合。由4Be4,2He4、6C13的原子量和轰击的α粒子的能量,能够求出按反应式进行过程对应的质量亏损等于0.01665原子量单位(相当于15.5兆电子伏特的能量)。由此可见,γ光子的能量不可能超过15.5(兆电子伏特)。查德威克证明,如果假设铍在α粒子轰击下发射出的辐射是由中性的、质量接近于质子的粒子组成的,便圆满地解释了这一放射现象,其反应式为
4Be9+2He4→(6C13)→6C12+0n1
因为中子不带电,所以它从原子和分子的近傍飞过时同它们的相互作用很弱,这就是它的电离本领极小,而穿透本领很强的原因。中子与原子核之间的碰撞,与弹性球之间的碰撞相同,遵守能量守恒和动量守恒定律。利用此二定律可得出对心碰撞时,反冲核的速度为
式中的v′为反冲核速度,v为中子的初速度,Mn为中子的质量,M为反冲核的质量。在中子速度相同的情况下,质量为M1和M2的两个不同的反冲核的速度v′1和v′2之比为
由此式便可求出中子的质量Mn。由各对不同的核得到相同的中子质量Mn这件事实,证实了查德威克假设:铍的辐射不是光子,而是质量Mn=1.00893的中子。
【正电子】亦称“阳电子”。是电子的反粒子,基本粒子之一。常用符号e+表示。所带电量与电子相等,但符号相反;质量也与电子相同。正电子的存在最早是英国物理学家狄拉克在理论上所预言,1932年由美国物理学家安德逊在宇宙射线中发现。当能量超过1.02兆电子伏特的光子经过原子核附近时,或在放射性元素的正β衰变中都可出现正电子。当它和电子相遇时,就会被湮灭而放出两个γ光子。
【核子】组成原子核的基本粒子。质子和中子的统称。
(D2O),在海水中重水大约占海水的七千分之一。它的原子核是由一个质子和一个中子组成的氘核。被加速器加速的氘核能产生很多核反应。在热核反应中释放出巨大的能量,是一极有前途的能源。
【核力】核力是核子之间的作用力,它是核子组成稳定的原子核的非常巨大的力。核力是一种近程力,在大于10-15米的距离时,核力远比库仑力小。在小于10-15米的距离时,核力比库仑力增加得更为迅速,核力与核子是否带有电荷并无关系。核力的本质,目前认为是一种交换力。我们知道电磁力是通过电磁场而作用的,电磁场具有粒子(光子)性,因此电磁力是通过光子的交换来实现的一种交换力。对核力,目前假设,核子之间的相互作用是通过一种特殊的粒子(介子)的交换来实现的。认为中子和质子的相互作用是通过带正、负电的或中性的介子(π+、π-或π°)的交换来完成的,交换的方式为
目前以介子场论作为核力的基本理论,它能作出很多有价值的定性说明,但是这种理论还不完备,还存在严重的困难。核力的本质,还没有一个比较完美的理论来说明。
【质量亏损】按照经典的想法,原子核的质量应等于核内所有核子质量的总和。例如,电荷数为Z、质量数为A的原子核的质量应等于
ZMp +(A-Z)Mn
式中Mp和Mn分别为质子和中子的质量,然而从实验测得的原子核的质量MA恒小于上式给出的量值,其差额
△M=ZMp +(A-Z)Mn -MA
为质量亏损。质量亏损说明当核子集合组成原子核时要放出结合能。
个质子和两个中子组成,质子质量为1.007276原子质量单位,中子质量为1.008665原子质量单位,故这4个核子独立存在时的总质量为
2×(1.007276+1.008665)
=4.031882
但当它们组成氦核后,其氦核质量为4.001505原子质量单位,其质量亏损为
4.031882-4.001505
=0.030377
由于△E=△Mc2=0.030377×1.660×10-27(公斤)
×(3×108)2=28.297(MeV)
1个原子质量单位相当于931.50MeV(兆电子伏特)的能量。
【质能关系式】根据相对论原理,物质的质量与能量之间的关系式:E=mc2;其中 c为真空中的光速。当物质的能量发生改变时,它的质量就按照这一关系相应地发生变化,反过来也是如此。此式是相对论的一个重要结论,且为实验所证实。人们运用这一关系式解释原子核质量亏损现象时,就发现了核内蕴藏着巨大的能量,看到了利用原子能的可能性和重要性。按照这一关系式,1克质量相当于9×1020尔格或9×1013焦耳的能量。
【平均结合能】将原子核的结合能除以核子数(即质量数A),即得每个核子的平均结合能。不同元素的原子核的稳定程度是不同的。我们可以用每个核子的平均结合能来表示原子核的稳定程度,核子的平均结合能越大,原子核就越稳定。质量数中等的核,平均结合能近似相等,在8MeV左右,而最轻和最重的一些核(元素周期表上两端的原子核)平均结合能较小。由此可见,中等原子量的核最稳定。在重核裂变或轻核聚变时,都相当于平均结合能较小的核转变为平均结合能较大的核,因而能释放能量。
【裂变】重核分裂为两个中等质量核的过程,同时还可能放出中子(也有分裂成更多裂块的情形,但几率很小)。裂变有自发和感生两种,前者裂变的半衰期很长。如铀-238的半衰期为1016年。后者指原子核在受到其他粒子轰击时立即发生的裂变,如铀-235受到热中子(非常慢的中子)轰击时就能分裂。铀核裂变时的产物多种多样,有时裂变成氙和锶,有时裂变为钡和氪,有时裂变成锑和铌等等;同时还放出2~3个中子。原子核裂变时释放出巨大能量(包括裂块和中子的动能及γ辐射的能量等)。在原子核反应堆中已经能控制和利用这种能量。例如,92U235裂变时,能放出巨大的能量,根据计算和实验测得:每一个核分裂时约放出200MeV(兆电子伏特)的能量,主要是裂变碎片的动能,辐射能约占总能量的10%。能量分配为: (1)裂变碎片的动能168MeV;(2)中子的动能5MeV;(3)裂变碎片衰变时放出的能量13MeV;(4)裂变时放出的γ射线的能量5MeV;(5)中微子的能量11MeV。这些能量最后绝大部分转变为热能。以一个铀核裂变产生200MeV的能量来计算。1千克铀全部裂变时放出的能量相当于 2500吨优质煤完全燃烧时放出的化学能。此两种燃料的质量比为2.5×106,由此可见核内所蕴藏的能量比化学能巨大得多。
【原子能】指原子核能。原子核结构发生变化时放出的能量。在实用上指重核裂变和轻核聚变时所放出的巨大能量。在利用裂变所放出的能量方面已取得很大进展,现已建成各种类型的原子核反应堆和原子能发电站。轻核聚变时放出的能量要比同质量重核裂变时大几倍。聚变能量是太阳等恒星能量来源的重要部分;而人工控制聚变反应以及利用其能量的研究正在积极进行。急剧的裂变和聚变反应会引起爆炸,原子弹和氢弹就是根据这一原理制造的。此外对放射性同位素各种辐射线的应用,也是原子能利用的一个重要方面。
【链式反应】当一个中子引起一个铀核裂变后,裂变中放出的中子继续能引起其他铀核裂变,并且能不断继续下去。例如,铀-235的核吸收一个中子后发生裂变,同时放出二到三个中子;除去损耗以外,这些中子中如能至少剩下一个以引起另一个铀-235核裂变,链式反应就可持续不断。在天然铀中,29.3%是铀-238,只有0.7%是铀-235。铀-235俘获各种能量的中子都会发生裂变,而且俘获慢中子发生裂变的几率较大。铀-238和快中子作用时,大多俘获中子后形成铀-239,并不发生裂变;如果铀-238和慢中子作用,它们只发生弹性碰撞,而不发生裂变反应。因此铀-238的存在是不利于裂变反应的继续进行的。因此作为核燃料的铀均采用浓缩铀(其中铀-235的含量比天然铀中的含量高)。各种浓缩度的铀已广泛应用于原子核反应堆和原子武器中。
【临界体积】也称“临界大小”。可发生裂变的物质,产生链式反应所必须具有的最小体积。如果铀块的体积小于临界体积,中子从铀块中通过时,可能还没有碰到铀-235而引起裂变前就已飞出铀块外去了。于是中子数目越来越少,不能使链式反应继续下去。在原子核反应堆能正常运转,即堆内链式反应能正常进行,就必须能保证由原子核裂变所产生的中子,能补偿被其它核俘获(不产生裂变)或者逸出反应堆而损耗的中子,这条件只有在反应堆具有一个最低限度的体积,即临界体积时,才能实现。临界体积与堆内可裂变物质,例如,同位素铀-235的含量百分比、铀和减速剂的布置方式以及其他物质存在的情况都有关,因而它不是一个常数。又如要使原子弹发生爆炸,也必须使铀块具有一个最低限度的体积,这体积也称临界体积。在设计原子核反应堆时,临界体积的计算是重要的一环。
【原子弹】以纯铀-235或纯钚-239作核燃料(或称炸药),将它们做成半球形的两块,每一块的体积小于临界体积,因此单块存在不能引起核裂变的链式反应。但当两块合成一块时,将大于临界体积,中子倍增系数K比1大很多,只要有一个中子进入,链式反应将开始,并非常激烈地进行。将这两块半球形的核燃料,分开安装在炸弹中,其中一块被固定,另一块后面装上普通炸药和引爆装置。当引爆装置引起普通炸弹爆炸时,就把两块炸药迅速压在一起,成为一个整块,这时核裂变开始并发生激烈的链式反应,大量能量在极短的时间内放出,因而形成剧烈爆炸,这就是原子弹爆炸的原理。
【核反应堆】使原子核裂变的链式反应能够有控制地持续进行而获得核能的装置。是利用原子能的一种最重要的大型设备。如果裂变反应达到一定强度后,控制中子倍增系数K=1,这时裂变链式反应就能有控制地按照这一强度进行下去,不发生爆炸而输出巨大能量。按照不同的目的和要求,反应堆有许多型式。原子核反应堆主要有三种类型,它们是非均匀反应堆,均匀反应堆和增殖堆。(1)非均匀反应堆:此种反应堆的中心部分用重混凝土屏蔽,以防止各种放射性射线对反应堆周围人们的伤害。堆芯部分装着铀棒,这些铀棒是浓缩铀,这些铀棒插在减速剂(通常为石墨或重水)中,减速剂的作用是使裂变产生的高速中子和石墨或重水的原子碰撞后变成慢中子,慢中子不会被铀-238吸收,但能引起铀-235的分裂,所以减速剂使中子倍增系数K增加。堆芯中还插有控制棒,它们插在各层铀棒之间,通常是用碳化硼或镉制成的,它能吸收中子,控制棒推入深些,吸收的中子就多,逐渐拉出吸收的中子就渐渐减少,通过控制棒插入的深浅可以控制堆芯内的中子数,从而控制了链式反应的速度。堆芯的外面是传热剂,如液态钠吸收了反应堆放出的能量以后,由泵打到热交换器,在那里把热量传给水,然后再回到堆芯去循环。水获得热量后成为蒸气,可以推动汽轮机工作。可用于发电机组的动力,核潜艇的动力等。(2)均匀反应堆:这种反应堆是将浓缩铀的盐类溶解在重水中(重水又作为减速剂),然后通入堆芯,堆芯有一定的体积,在其中进行链式反应,镉棒插入堆芯以控制中子倍增系数K。溶解着铀的盐类的重水本身同时作为传热剂。这就是均匀反应堆。(3)增殖反应堆:当铀-238俘获中子以后,经过两次β蜕变形成了钚-239。在天然铀中主要是铀-238,其中有一部分钚-239。如果有一个钚-239在中子作用下发生了裂变反应,同时放出几个中子。其中有一个中子引起其他的钚-239发生裂变,而剩下的中子被铀-238俘获后蜕变成钚-239,这就意味着,这块天然铀中不但有钚-239的链式反应,而且还有钚-239的增殖。一个增殖反应堆,中心处是活性区,活性区内是铀-235和稀释剂,铀-235裂变而放出快中子。这些快中子射入围成一圈的铀棒使钚-239增殖,当铀棒中的钚-239增加到一定的程度,增殖和链式反应就开始。这种反应堆可以用较易得到的天然铀作铀棒,其功率也由控制棒来控制。当需要停止反应堆的工作时,可将所有的控制棒全部插进。将大量的中子全部吸收,链式反应停止,反应堆停止工作。反应堆的核燃料的链式反应,不象其他的化学燃料,在燃烧时需要氧气。所以核潜艇的隐蔽性更强。可以长期沉于水下,不需要到海面上吸气。
【减速剂】也称“慢化剂”。它可使快速运动的中子减速成为慢中子或热中子,热中子就能有效地使铀-235发生裂变,减速剂是原子核反应堆中必不可少的物质。优良的减速剂必须具备两种性质:(1)对中子的吸收较少;(2)中子与它的核只要碰撞很少次数就能被减慢到所需要的程度。常用的减速剂有重水、石墨、铍等。一般减速剂均采用较轻的元素或化合物。中子与原子核的弹性碰撞会引起中子运动方向的改变和中子的一部分能量损失(将能量传给原子核),从动量和能量守恒定律出发,可证明,碰撞后质量为M的反冲核的能量为
当M=m时(即反冲核的质量等于中子质量时)α最大为1,反之M与m的差距越大其α值越小。比较轻的物质的原子核的质量更接近中子的质量,因而α值大,减速效果好。
【控制棒】用以控制原子核反应堆的反应速率或输出功率的元件,它是用能够强烈吸收中子的材料(如镉或含硼物质等)制成,一般制做成棒状,故名控制棒。用它可以控制反应堆的启动和停止,以及控制核裂变链式反应的强弱,从而达到反应堆输出功率的控制,控制棒插入堆内越深,吸收的中子越多,使反应速度减慢或停止;而把棒从堆内抽出时,吸收的中子减少,可使反应起动或使反应加快。一般控制棒也不是一根,也可用插入棒的多少来调整。这种调节一般都通过自动装置进行。
【载热剂】反应堆工作时,核燃料裂变放出巨大的热量。这些热量必须靠载热剂的循环流动不断把能量输送到堆外,作为动力的能源加以利用,同时使堆内的温度不致过分升高,保证反应堆正常工作,优良的载热剂必须具有不易吸收中子、比热大、在高温和γ辐照下不会分解等性质,并可兼作减速剂用。常用的有水,重水,二氧化碳,液态金属钠、钾和某些有机物(如双酚)等。
【防护层】在核辐射强烈的区域(如原子核反应堆、加速器周围)使人体免受过量的γ射线、中子辐照以及其它放射线的伤害而建造的屏蔽层。一般采用厚实的重混凝土墙来屏蔽γ辐照,用水层、石蜡层和含硼物质来减弱中子辐照。
【反射层】能够起反射作用的物质层。在原子核反应堆中,反射层包围反应堆的主体部分,用来反射中子,以减少中子逸出反应区的可能。便用反射层可以缩小反应堆的体积。常用的材料是水、石墨、铍等。
【聚变】由于轻核中的核子的平均结合能更小,当轻核相遇聚合成
百万电子伏特,其反应式可写成
因为所有的核都带有正电,相互间存在着库仑排斥力,因此在一般条件下不可能发生核的聚变。自然界中只有在太阳等恒星内部,因温度极高,轻核才有足够的动能克服库仑斥力,而能自发地进行持续的聚变。人工聚变目前只能在氢弹爆炸或由加速器产生的高能粒子碰撞中实现,然而大规模的聚变控制,目前尚未能办到,正在通过控制热核反应进行探索研究。可聚变的元素有氢、重氢、锂等轻原子核。聚变反应因为需要在高达百万度或千万度以上的温度才能进行,故又称“热核反应”。在摄氏百万度以上的高温,所有原子均完全游离,原子中所有电子全部逸出,仅余下原子核。在高温下这些原子核因热运动而获得高速,在它们相互碰撞时因直接接触而能产生聚变反应,同时放出很大能量。
【热核反应】热核反应是在极高的温度下将轻核聚变为较重的原子
核,因而放出大量能量的反应。当温度足够高时,聚变能自动持续进行。象太阳等恒星的主要能量来源就是其内部的热核反应。根据理论上的估算,使氘核和氚核实现自持热核反应,需要五千万度以上的高温,而氘核同氘核则需要几亿度的高温。目前已实现的人工热核反应是氢弹的爆炸,它利用铀(235U)或钚(239Pu)在裂变时发生爆炸而产生的高温,从而使内部的轻原子核产生剧烈而不可控制的聚变反应。由此可见,氢弹的爆炸,必须由原子弹来引爆。至今,人们不能自如地控制热核反应,其关键在于如何使等离子体达到所需的极高温度,并使之稳定足够长的时间。这是目前自然科学研究的重点问题之一。一旦研究成功,人类将从水中的重氢(氘)获得取之不尽的能量。
【氢弹】它是使轻核发生不可控的热核反应,而产生巨大能量的炸弹。氢弹的结构很复杂,它是靠原子弹爆炸产生的极高温度,使氢原子核发生不可控的聚变而释放巨大能量的。它的威力要比原子弹大很多倍。我们知道,原子弹的起爆,是靠普通炸弹把两块均不足临界体积的核燃料推在一起,发生裂变链式反应而引起原子弹爆炸。由此可见,在一颗氢弹中,包含着普通炸弹、原子弹。它们共同完成氢弹的引爆工作。
【基本粒子】泛指比原子核还要小的物质单元。包括电子、中子、质子、光子以及在宇宙射线和高能原子核实验中发现的一系列粒子。现今已发现的基本粒子有30余种,连同它们的共振态共有300余种。每一个基本粒子都有确定的质量、电荷、自旋、平均寿命等;它们中的多数是不稳定的,在经历一定的平均寿命后转化为别种基本粒子。基本粒子有的是中性,有的带正电或负电,电量大小与电子相同。它们的质量大小有很大差别。按照基本粒子之间的相互作用,可以把它们分为三类:(1)强子。质子和中子之间的作用力,是一种比电磁作用大很多的相互作用,叫做强相互作用。凡是参与强相互作用的粒子,都叫做强子。强子包括重子和介子两类。(2)轻子。轻子都不参与强相互作用。μ介子、电子、μ中微子和e中微子都属于轻子。(3)光子。光子只有一种光子。即人们常说的光量子。许多基本粒子都有对应的反粒子。一对正反粒子相遇时,会同时消失而转化为别种粒子,这种现象叫做湮灭(湮没)。
【强子】参与强相互作用的基本粒子,包括介子和重子两大类。核力是一种强相互作用,通常认为是由于π介子在核子(质子和中子)间交换而引起。π介子和核子都是强子。强子结构的夸克模型认为,强子
照夸克模型,介子是由一个夸克和一个反夸克组成的。重子是由三个夸克组成的,反重子是由三个夸克组成的,夸克又可叫做层子。
【轻子】包括电子、μ子和中微子三种。它们的共同特点是:自旋
相互作用(以此区别于重子)。
子,如电子、质子、μ子及由奇数个核子构成的原子核等,都是费密子。因意大利物理学家费密而得名。
观粒子,如光子、π介子、α粒子及由偶数个核子构成的原子核等。因印度物理学家玻色而得名。
【介子】基本粒子的一类,包括π分子、K介子、ρ介子、ω介子、
(0、1、2)倍,即都是玻色子。介子都不能稳定存在,经历一定平均寿命后即转变为别种基本粒子。有的介子是荷电的,也有中性的。例如π介子有三种,π+和π-质量为电子的273.3倍,电荷相反,互为正、反粒子,而π°是中性的,质量为电子的264.3倍,其反粒子就是它身自。荷电K介子K+和K-互为正、反粒子,质量为966.7me;中性K介
时称为标介子,ρ、ω、j介子的自旋为1,有时称为矢介子。日本物理学家汤川秀树最早(1935年)通过核力的研究预言介子的存在,并推测它的质量介于电子与质子之间。后来在宇宙线中先后发现了μ和π介子,μ介子的质量为电子的206.6倍,现在被正式命名为μ子,不归入介子而归入轻子一类,而π介子才是核力的媒介。近几年在高能加速器中使粒子相互碰撞,新的介子(共振态)续有发现。
【超子】质量超过核子(中子、质子)的各种重子。超子包括三种
密子。这三种超子为: (1) Λ°(lambda)粒子——只有一种,不带电,其质量约相当于1, 115.4MeV。(2) Σ(sigma)粒子——共有三种:Σ+ ,Σ°,Σ-。并且还有与其相当的反粒子。Σ+带正电,质量约相当于1,189.4MeV。Σ°不带电,其质量约相当于1,192.3MeV。Σ-带负电,其质量约相当于1,197.2MeV。(3)Ξ(ksi)粒子——共有两种:Ξ°和Ξ-,还有其相当的反粒子。Ξ°不带电,其质量约相当于1, 314MeV; Ξ-带负电,其质量约相当于1,321MeV。超子都不能稳定存在,经过一定的平均寿命后,即衰变为其他基本粒子。其中:(1) Λ°粒子的半衰期约为2.6×10-10秒,其主要衰变方式为
Λ°→P+π-
Λ°→n+π°
(2)Σ+粒子的半衰期约为0.79×10-10秒,其主要衰变方式为
Σ+→P+π°
Σ+→n+π+
(3)Σ-粒子的半衰期约为1.58×10-10秒,其主要衰变方式为
Σ-→n+π-
(4)Σ°粒子的半衰期很短,约为10-14秒,很显然Σ°的衰变主要是一个电磁交互作用的反应,因此在衰变中有光子被放出来,其反应方式为
Σ°→Λ°+γ
(5) Ξ°粒子的半衰期约为3×10-10秒,其主要衰变方式为
Ξ°→Λ°+π°
(6) Ξ粒子的半衰期约为1.75×10-10秒,其主要衰变方式为
Ξ-→Λ°+π-
Ξ粒子也称为递次粒子,因为其主要的衰变方式是先衰变为Λ°粒子,然后Λ°粒子再衰变为质子和介子。
【湮灭】当一种基本粒子和它的反粒子相遇时,两个粒子一起消失而转化为他种基本粒子的现象。例如电子和正电子相遇而转化为两个光子。
【高能物理】即“高能粒子物理”。研究具有很高能量(一般在1GeV以上,1GeV=109eV)的基本粒子的性质,以及它们之间的相互作用和转化规律,这对物质结构的认识具有重要意义。高能加速器是高能物理研究的基本设备之一,目前最大的加速器能把质子加速到具有几百GeV(千兆电子伏)的能量。另外宇宙射线中也含有高能粒子,这一部分的研究也属于高能物理范畴。
【宇宙射线】简称“宇宙线”。来自宇宙空间的高能粒子流。宇宙射线分为两类:一是原宇宙线,是来自地球以外的高能带电粒子,其中约有91.5%是质子,7.8%是氦核(α粒子),其余是碳(C)、氮(N)、氧(O)及铁(Fe)等重原子核,能量极高,可达1020电子伏特以上。二是次级宇宙射线,由于宇宙射线进入大气层后,和空气中原子核发生碰撞,引起核的分裂并产生一系列其他粒子,通过这些粒子与周围物质的相互作用及自身的转变,形成次级宇宙射线,其成分中有一半以上是μ子,这部分射线穿透本领很大,能透入深水和地下,称“硬性部分”。另一部分主要是电子和光子,穿透本领较小,称“软性部分”。由于初级宇宙射线能量极高,生物到大气层外时,就可能受到它的伤害或影响,同时它能引起许多目前无法用人工实现的核反
No comments:
Post a Comment