The symmetry and simplicity of the
laws of physics and the Higgs boson
Juan Maldacena
Institute for Advanced Study, Princeton, NJ 08540, USA
Note that all these
uctuations happen at short distances. If we follow a very big
circuit, then we pass through many countries and their exchange rates all average out.
In the vacuum, at long distance they average out to zero so that we recover the classical
result where the elds are all zero.
The probability cost that we have to pay when we set the exchange rates to values
leading to larger speculative opportunities is also related to the energy cost we discussed
above. They are essentially the same. Higher energy con gurations are less probable. In
nature, the particles that carry the weak force are very massive. They weigh around a
hundred times the mass of the proton, which is a lot for an elementary particle. They are
called the W+, W and Z bosons. Their large mass explains the weakness of the weak
force. This large mass implies that we are very unlikely to produce
uctuations in the
\weak exchange rates". Therefore, a particle that interacts only through the weak force,
such as the neutrino, is very di cult to see. In fact, a few per cent of the energy of the
sun comes out in neutrinosz. However, we are totally oblivious to these neutrinos. They
simply pass through us day and night and we do not see them. You need very big detectors
with very sensitive electronics to catch a very tiny fraction of them.
Magnetism and Superconductivity - Page 133 - Google Books Result
https://books.google.com/books?isbn=3540666885
Laurent-Patrick Levy - 2000 - Science
... equilibrium decrease quadratically with distance (-rA/Q /L2). Many long wavelength fluctuations are excited because they involve only an infinitesimal energy.The XY Model - Springer
link.springer.com/.../10.1007%2F978-3-6...
Springer Science+Business Media
Loading...
by LP Lévy - 2000 - Related articles
Many long wavelength fluctuations are excited because they involve only an infinitesimal energy. In a low-dimensional system, they make dominant Mermin–Wagner theorem
From Wikipedia, the free encyclopedia
In quantum field theory and statistical mechanics, the Mermin–Wagner theorem (also known as Mermin–Wagner–Hohenberg theorem or Coleman theorem) states that continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions in dimensions d ≤ 2. Intuitively, this means that long-range fluctuations can be created with little energy cost and since they increase the entropy they are favored.
This is because if such a spontaneous symmetry breaking occurred, then the corresponding Goldstone bosons, being massless, would have an infrared divergent correlation function.
The absence of spontaneous symmetry breaking in d ≤ 2 dimensional systems was rigorously proved by Sidney Coleman (1973) in quantum field theory and by David Mermin, Herbert Wagner and Pierre Hohenberg in statistical physics. That the theorem does not apply to discrete symmetries can be seen in the two-dimensional Ising model.
Raul Peng,2nd-year PhD in TheoPhys@FU Berlin 收起
This is because if such a spontaneous symmetry breaking occurred, then the corresponding Goldstone bosons, being massless, would have an infrared divergent correlation function.
The absence of spontaneous symmetry breaking in d ≤ 2 dimensional systems was rigorously proved by Sidney Coleman (1973) in quantum field theory and by David Mermin, Herbert Wagner and Pierre Hohenberg in statistical physics. That the theorem does not apply to discrete symmetries can be seen in the two-dimensional Ising model.
Raul Peng,2nd-year PhD in TheoPhys@FU Berlin 收起
用一些简单的arguement来估计复杂系统的行为。最常见的就是比较一些具有特征尺度的量。举些例子来说吧。
1 宏观低速下的问题,在做计算前,你就知道要用牛顿力学处理,这个决定就依赖于物理图像或物理直觉。(低速比较的是系统的速度与光速,宏观比较的是系统的大小和其德布罗意波长)。
2 Mermin Wangner theorem 具有连续对称性(compact Lie),短程相互作用的低维系统在有限温度没有自发对称性破缺。用物理图像,就是long range fluctuation 几乎不消耗能量(连续对称性使得局部可做无穷小变动,短程相互作用使得此变动几乎不消耗能量。)于是系统没有long range order...
低维系统fluctuation重要。画个 n 维lattice,产生一个n-1维的domain wall. 然后发现创造domain wall所需要能量随n 增大而增大,而entropic gain几乎不变。于是高维fluctuation不重要。所以平均场理论高维好。就有了所谓的upper critical dimension.
3 自发对称性破缺产生gapless mode 这个非常图像: 想像一个势能面有一个低谷(基态),然后该最低点凸起,形成一圈能量相同的极小值区域。于是新的mode就是在这一圈极小点上的运动,可以想象这就是U(1) phase fluctuation...超流系统最核心的量就是这个phase了。
4 restricted Hartree-Fock计算氢气分子解离时能量远远高估。其实就是个简单的图像,多体波函数是含有相同比重的离子与共价键的线性组合 ,当分子解离后,显然电子一边一个,两个去一边构成离子构型显然能量高。所以换成unrestricted Hartree-Fock就除去了共价成分,自然能描述好解离(不过会带来一个问题哦)。
5 time-dependent density functional theory 计算charge transfer excitation 会低估能量。图像: xc potential local, 不可能有1/r 的渐进行为,低估了产生跃迁偶极所需的能量。
6 凝聚态里常引入特征温度,方便引入物理图像。如Fermi temperature。对于金属而言远大于室温,也就是说温度效应影响不大。还有一些温度(能量尺度)也常用来做估计,如kondo temperature,只有温度低于特征温度才能看到,否则由温度产生的声子散射将主要贡献电阻。
7 Lieb-Robinson bound, exponential decay of correlation for gapped system等等也都是图像很清晰的,短程相互作用于是使得信息传播在有限时间不可能到很远。于是local operation不能有限时间传播很远。自然而然给出了correlation decay.而Lieb-Robinson velocity给出了decay 的scale...
8 weak localization 这个图像更清楚。disorder 系统中,电子被杂质散射,于是会走一个loop回到原点。常画的图是,电子顺时针走一圈,逆时针走一圈,回到同一个位置会interfere constructively,于是等效于电子在这点变得localize了,区别于anderson localization 这个前加了weak。 那么,这个loop要多大能?从图像其实非常清晰,必须小于phase decoherence length啊,否则没有coherence哪来的interference? 再问,如何除去? 加磁场啊,有磁通穿过loop,那么就有机会把interfere constructively 变为 destructively。再问,如果有spin orbit coupling如何?antilocalization!(why?) 即使要从微观模型画Feynman图,从这个图像你都知道那类图最重要(cooperon)。
9 Andreev reflection也有个好图像。金属的电子要进入超导体,当偏压小于超导gap时进不去啊。于是在表面反射成空穴。等效于两个电子进入超导形成cooper pair...接着可以理解Andreev bound state, 超导|金属|超导 Junction。金属的电子在碰到界面便反射成空穴,碰到另一个界面又反射成电子,如此反复,形成驻波,便是Andreev bound state. 这个驻波需要电子和空穴的动量(在相位上),与junction长度,两边相位差匹配(驻波条件),画个图就能轻松决定这个态的能量了。
10 如何实现topological superconductor in 1d? 我老板做了很多工作,但都是从物理图像出发的: 需要p-wave, spinless fermion, 如何构造模型实现? 用BCS s-wave superconductor,加spin-orbit coupling不就产生p-wave了么?加强磁场,把系统变成spin polarized, 不就是effectively spinless了么?有了图像,写模型做计算太容易了。
总之,物理图像对理论物理非常非常重要!我老板感觉太好,常常在我做计算前把答案都能猜得差不多。
生命在于发现
1 宏观低速下的问题,在做计算前,你就知道要用牛顿力学处理,这个决定就依赖于物理图像或物理直觉。(低速比较的是系统的速度与光速,宏观比较的是系统的大小和其德布罗意波长)。
2 Mermin Wangner theorem 具有连续对称性(compact Lie),短程相互作用的低维系统在有限温度没有自发对称性破缺。用物理图像,就是long range fluctuation 几乎不消耗能量(连续对称性使得局部可做无穷小变动,短程相互作用使得此变动几乎不消耗能量。)于是系统没有long range order...
低维系统fluctuation重要。画个 n 维lattice,产生一个n-1维的domain wall. 然后发现创造domain wall所需要能量随n 增大而增大,而entropic gain几乎不变。于是高维fluctuation不重要。所以平均场理论高维好。就有了所谓的upper critical dimension.
3 自发对称性破缺产生gapless mode 这个非常图像: 想像一个势能面有一个低谷(基态),然后该最低点凸起,形成一圈能量相同的极小值区域。于是新的mode就是在这一圈极小点上的运动,可以想象这就是U(1) phase fluctuation...超流系统最核心的量就是这个phase了。
4 restricted Hartree-Fock计算氢气分子解离时能量远远高估。其实就是个简单的图像,多体波函数是含有相同比重的离子与共价键的线性组合 ,当分子解离后,显然电子一边一个,两个去一边构成离子构型显然能量高。所以换成unrestricted Hartree-Fock就除去了共价成分,自然能描述好解离(不过会带来一个问题哦)。
5 time-dependent density functional theory 计算charge transfer excitation 会低估能量。图像: xc potential local, 不可能有1/r 的渐进行为,低估了产生跃迁偶极所需的能量。
6 凝聚态里常引入特征温度,方便引入物理图像。如Fermi temperature。对于金属而言远大于室温,也就是说温度效应影响不大。还有一些温度(能量尺度)也常用来做估计,如kondo temperature,只有温度低于特征温度才能看到,否则由温度产生的声子散射将主要贡献电阻。
7 Lieb-Robinson bound, exponential decay of correlation for gapped system等等也都是图像很清晰的,短程相互作用于是使得信息传播在有限时间不可能到很远。于是local operation不能有限时间传播很远。自然而然给出了correlation decay.而Lieb-Robinson velocity给出了decay 的scale...
8 weak localization 这个图像更清楚。disorder 系统中,电子被杂质散射,于是会走一个loop回到原点。常画的图是,电子顺时针走一圈,逆时针走一圈,回到同一个位置会interfere constructively,于是等效于电子在这点变得localize了,区别于anderson localization 这个前加了weak。 那么,这个loop要多大能?从图像其实非常清晰,必须小于phase decoherence length啊,否则没有coherence哪来的interference? 再问,如何除去? 加磁场啊,有磁通穿过loop,那么就有机会把interfere constructively 变为 destructively。再问,如果有spin orbit coupling如何?antilocalization!(why?) 即使要从微观模型画Feynman图,从这个图像你都知道那类图最重要(cooperon)。
9 Andreev reflection也有个好图像。金属的电子要进入超导体,当偏压小于超导gap时进不去啊。于是在表面反射成空穴。等效于两个电子进入超导形成cooper pair...接着可以理解Andreev bound state, 超导|金属|超导 Junction。金属的电子在碰到界面便反射成空穴,碰到另一个界面又反射成电子,如此反复,形成驻波,便是Andreev bound state. 这个驻波需要电子和空穴的动量(在相位上),与junction长度,两边相位差匹配(驻波条件),画个图就能轻松决定这个态的能量了。
10 如何实现topological superconductor in 1d? 我老板做了很多工作,但都是从物理图像出发的: 需要p-wave, spinless fermion, 如何构造模型实现? 用BCS s-wave superconductor,加spin-orbit coupling不就产生p-wave了么?加强磁场,把系统变成spin polarized, 不就是effectively spinless了么?有了图像,写模型做计算太容易了。
总之,物理图像对理论物理非常非常重要!我老板感觉太好,常常在我做计算前把答案都能猜得差不多。
生命在于发现
蜗牛的外壳, 我的甲, 偶然来到的朋友啊, 希望这里能让你愉快地逗留一下
No comments:
Post a Comment