n1673年,Christian
Huygens在《钟表的振动》中,采用纯几何方法研究了平面曲线的性质。设在曲线上P点处给了一条固定的法线,当一条相邻的法线移向这固定的法线时,这两条法线的交点在固定法线上达到极限位置,它就叫做曲线在P点的曲率中心。1731年出版的牛顿《解析几何》(1671)也有类似观点。
Huygens证明了,曲线上的点沿固定法线到这极限位置的距离(用现代的记号)是[1+(dy/dx)2] 3/2/(d2 y/dx2 ) 。这个长度是曲线在P点的曲率半径In particular the wanderer cannot ascend all the time, because then f'(x)
> 0 and the integral of f'(x) over X would be strictly positive
http://www.zyymat.com/author/pri2357
Thirty highly readable papers
Mar172015
烟花不堪剪写在豆瓣的文章, 原文标题”一些值得一读的数学论文”, http://www.douban.com/group/topic/38870457/
[PDF]Atiyah—Singer index theorem - The Abel Prize
www.abelprize.no/c53865/binfil/download.php?tid=53804
Abel Prize
Loading...
No comments:
Post a Comment