X-Y坐标系人人会读,人人要用。其实带坐标系的二维平面就是一个纤维丛。我们可以想象整个平面是一根Y向直线横扫X空间而形成的。被横扫的空间(这里是X)叫底空间,那根直线就是纤维。
从另一个角度看,我们也可以将XY平面当作一个乘积空间,即每一个X点可以与Y的每一点相乘得到一条直线
古典微积分中导数是函数的变化除以自变量的变化,推广到纤维丛就是截面的变化(平
行移动)对底流形参数的变化,这就是联络(一般有多个分量)。直感上可以猜到,纤维丛的联络由底流形和纤维二者共同决定。
行移动)对底流形参数的变化,这就是联络(一般有多个分量)。直感上可以猜到,纤维丛的联络由底流形和纤维二者共同决定。
底流形上的转换函数之非平庸由结构群描述。例如,Mobius带,我们注意到平面与弯折纸带可能有整体的差异。这是什么意思呢?从纸带上垂直于纸面放一根铅笔,当他沿纸带走一圈回来时,平庸情形没有变化,但在扭曲带上走时会反向。的结构群为{1,-1},-1出现在反向黏贴的那个地方。
类似地,纤维也有"转换函数"的对应物,由叫和乐群的东西描述。再看Mobius带。现在,不同于平庸情形的"相邻直线或纤维完全等价",相邻"直线"满足特定的转换关系(这就是称为"局部规范变换"的东西)。和乐群归根到底由结构群决定。
类似地,纤维也有"转换函数"的对应物,由叫和乐群的东西描述。再看Mobius带。现在,不同于平庸情形的"相邻直线或纤维完全等价",相邻"直线"满足特定的转换关系(这就是称为"局部规范变换"的东西)。和乐群归根到底由结构群决定。
描写变化的函数,如车辆飞机的路线,股票的涨落,影音讯号,都是用平面曲线记录的,因此,X-Y坐标系人人会读,人人要用。其实带坐标系的二维平面就是一个纤维丛。我们可以想象整个平面是一根Y向直线横扫X空间而形成的。被横扫的空间(这里是X)叫底空间,那根直线就是纤维。
从另一个角度看,我们也可以将XY平面当作一个乘积空间,即每一个X点可以与Y的每一点相乘得到一条直线。
当然这是一个太平庸的例子,但一般意义的纤维丛确实是乘积空间的推广。"推广"了什么?刚才的例子之所以叫平庸,是因为他每个地方的乘法完全一样,不同X的地方的Y直线毫无差异,就像红朝人民的脑袋,万众一心,平庸得可怕。总而言之,一张四平八板的纸片确实有点无聊。不过,稍微变一下就可以别开生面,例如,将纸带扭一圈或几圈以后对接,形成Mobius带子。哈!你没办法用简单的坐标系或通用的乘法了。局部看来,小人度腹,依然是个"平面方形",直线段尚在,依然可以用乘积空间描写,但稍微走远一点就发现,原来的"Y直线"整条都是直的而且对得很齐但现在"弯掉了",不对齐了。跳出三界,来个全观,则发现,相邻的弯掉的直线之间的关系(转换函数或联络)与扭曲的程度有关。
简言之,底空间各个地点各有各的纤维空间,就是非平庸丛了。
为了对阁下负责,对底空间,要做点补充。
第一是底空间无须平直,可以弯折。这个不奇怪,地球表面,阁下的俊脸贵体,都是弯曲空间。不弯还不行。没有曲线美。问题就大了。
第二,空间的长度单位(标准尺)可以随位置甚至时间而变,即,各个地方的长度单位还不一样(上海的1尺是广州的9寸)。这就是最通用的黎曼空间了。黎曼提出这种空间60余年以后,爱因斯坦找到了一个物理实例(使之成为最伟大的科学家),也就是阁下所在的宇宙,其实就是一个黎曼空间。真是不识庐山真面目,只缘身在此山中。当然阁下想看到尺子钟表不一样,或者看到时空之弯曲,您得稍微走高一点看才行,例如走100万光年回头看。藉助现代仪器如原子钟,地面与卫星轨道的时间差异就可以量出来。这里终于搭上了短江兄的GR话题
从另一个角度看,我们也可以将XY平面当作一个乘积空间,即每一个X点可以与Y的每一点相乘得到一条直线。
当然这是一个太平庸的例子,但一般意义的纤维丛确实是乘积空间的推广。"推广"了什么?刚才的例子之所以叫平庸,是因为他每个地方的乘法完全一样,不同X的地方的Y直线毫无差异,就像红朝人民的脑袋,万众一心,平庸得可怕。总而言之,一张四平八板的纸片确实有点无聊。不过,稍微变一下就可以别开生面,例如,将纸带扭一圈或几圈以后对接,形成Mobius带子。哈!你没办法用简单的坐标系或通用的乘法了。局部看来,小人度腹,依然是个"平面方形",直线段尚在,依然可以用乘积空间描写,但稍微走远一点就发现,原来的"Y直线"整条都是直的而且对得很齐但现在"弯掉了",不对齐了。跳出三界,来个全观,则发现,相邻的弯掉的直线之间的关系(转换函数或联络)与扭曲的程度有关。
简言之,底空间各个地点各有各的纤维空间,就是非平庸丛了。
为了对阁下负责,对底空间,要做点补充。
第一是底空间无须平直,可以弯折。这个不奇怪,地球表面,阁下的俊脸贵体,都是弯曲空间。不弯还不行。没有曲线美。问题就大了。
第二,空间的长度单位(标准尺)可以随位置甚至时间而变,即,各个地方的长度单位还不一样(上海的1尺是广州的9寸)。这就是最通用的黎曼空间了。黎曼提出这种空间60余年以后,爱因斯坦找到了一个物理实例(使之成为最伟大的科学家),也就是阁下所在的宇宙,其实就是一个黎曼空间。真是不识庐山真面目,只缘身在此山中。当然阁下想看到尺子钟表不一样,或者看到时空之弯曲,您得稍微走高一点看才行,例如走100万光年回头看。藉助现代仪器如原子钟,地面与卫星轨道的时间差异就可以量出来。这里终于搭上了短江兄的GR话题
协作渗透的结晶——指标定理与第二届阿贝尔奖- 豆丁网
2014年12月27日 - 在阿蒂亚的带领下,1982 年年仅25 岁的唐森纳证明了存在一个奇怪的四维空间,它与欧氏空间拓扑等价但不与微分拓扑等价,这意味着在四维空间中 ...
协作渗透的结晶——指标定理与第二届阿贝尔奖- 豆丁网
第九回里,A-S指数定理将流形上的椭圆微分算子的指数(算子的零模数差),与流形上的大范围拓扑性质相联系。为了看清这一点,我们可以沿着这样的路走一遭:
1, 同伦群、同调群。
这里的关键是二者用以描述和刻画流形的非平庸拓扑性质(比如刻画有洞的球体)的角度是什么?二者的生成元是什么?我们知道通论研究的是映射本身(k环路),因此对于一个m维流形,可以有任意高阶同伦群,这使得同伦群的研究相对复杂,比如连二维球面S^2的同伦群都没有完全解决。相反同调论研究的是同胚映射的像(对流形的剖分,k单形),因此没有高于流形维数m阶的同调群,这使得用同调群研究流形的拓扑性质更为容易。同时我们在对流形上的拓扑障碍的分析中可以看到,同调群和同伦群相互关联。在熟悉了一般同调论之后,推广的上同调论,谐和形式,层上同调论就易于理解。
2, 纤维丛理论
数学中的武林故事 | |
---|---|
abring
abring
经验 221点 (一般站友)
贡献 0点
|
数学中的武林故事
作者:怪客 1.黄教授. 这些故事都是在一个饭馆里从黄教授那儿听来的. 黄教授是我几十年的老相识,也是我一直佩服的朋友,他早年从学解析数论起家, 在国内时就小有名气,到美国后改练算术几何,虽然没做得特别大,也算是成就斐 然,毕业后经过一番波折,几年前在此间的一所大学混到了tenure,所以现在是正 儿八经的教授.也许是读书时专心过度,黄教授四十多岁了,依然是光棍一条,错过 了婚姻大事.好在他生性豪爽豁达,也不以此为意,而且喜爱户外活动,除了打网球, 一年四季海边钓鱼不说,每到秋冬季节还扛把猎枪到山里打猎,所以每天乐乐呵呵, 倒也过得快活自在. 只是人到中年,诸事烦杂,岁月易得,我和他虽然同在一地, 但见面的机会却是越来越少了. 长话短说,这次找到黄教授,是为了一个小朋友小胡.小胡两年前从国内顶尖大学 数学系毕业后就来到美国的一所长青藤名校,师从一位几何大师读学位,最近刚刚 过了资格考试,来我这儿玩几天散散心.我在国内时多蒙小胡的父母帮忙,知恩图 报,很想有机会报答一下. 和小胡深谈几次,我感觉到他是有些彷惶,好象是数学 上不知道该干什么好."这样吧小伙子,"我说:"我带你去见黄教授,让他和你好好 谈谈." 找到黄教授后我说明了来意,黄教授呲出黄牙一乐:"老怪,你这不是要我来毒害青 少年么?" 我说:"这是哪儿的话!小胡兄弟这样优秀的青年人才,又是初涉人世,老兄你不好 好给他讲讲这江湖上的急风险浪,我还要为他的前途担心呢.再说黄兄,我们兄弟 好一段不见了,也该好好聚聚,今天由我来做东." 黄教授笑说:"我们是该好好喝一顿了,这样吧,十四街新开了一家川菜馆,我们去 那儿边吃边聊如何?" 2.武林. 我们一行三人在小饭馆里坐定,两杯啤酒下肚,黄教授当即直奔主题:"小胡兄弟, 你看武侠小说吗?" 小胡有些迷惑:"当然,在大学看过." 黄教授说:"咱们中国人学数学的,没有不看武侠的.记得八几年的时候,那时国内 管数学竞赛的老裘,是系统所的副研究员,有一天我们几个到他家里去玩,发现他 家里满满的几书架书,没一本是数学书,全是武侠小说.看到我们吃惊的样子,老裘 笑着告诉我们,数学界没有一个不是精通武侠的.老裘讲,八四年的时候中国数学 会在上海开年会,会议结束后北京代表团一行一百多号人在机场等飞机,大家闲聊 起来,隔行如隔山,本来没什么好说的,但最终发现了一个共同话题,武侠小说.这 些教授研究员,居然个个都是武侠迷. 这帮老家伙还投票选了最喜爱的武侠,你 猜结果是什么?居然一致通过是神雕侠侣. 金庸里我最讨厌的就是神雕侠侣,什 么他妈古墓派,莫明其妙." 我笑着说:"记得华老曾经说过,武侠小说是成年人的童话." 黄教授说:"这都是表面上打哈哈,哪有成年人看童话的?那岂不是个神经病?这里 面是有一个深层原因的,说起来简单,数学界实际上就是武林,就是江湖.我在国内 国外数学界混了几十年,越来越感觉到这一点." 小胡不解地说:"我所见过的老师个个都是谦谦君子,儒雅长者,没有象绿林中人物 的." 黄教授哈哈笑着说:"在学生面前装假正经,古今中外都一样.我问你,武林中最重 要的是什么? 是武功,只要武功超群,其他什么都不重要. 数学界也是一样,最重 要的是数学功夫,只要你解决了什么超级难题,不管怎么样别人也得服你.武侠里 最看重的是座次排名,数学里也是一样,最重要的就是排名.老板给学生写推荐信, 主要就是说这学生比谁谁强. Borel在回忆录里说,每年IAS的老家伙们最大的乐 趣之一就是给申请Postdoc的人排名,看看谁比谁厉害,其实他没说的是这帮老家 伙何止只给Postdoc们排名,他们是在给整个数学界排名,虽然从不明说,可圈里的 人谁的心里都有数,谁比谁强,谁比谁差,一清二楚." 小胡说:"IAS一共只有七个教授,怎么可能给整个数学界打分排名?" 黄教授摇头说:"你哪里知道这七个人的厉害,那可是真正的绝顶高手. 有一次有 人给Weil看一篇paper,Weil看了作者就说,这个问题这小子做不出来,即使做出来 也肯定是错的.果不其然,Weil老先生的眼光,可谓如电如炬.还有一次,十几年前 我的老板曾尽几年之力写成一长篇paper,200多页,非常technical,复杂得要命, 拿去给Deligne看,结果Deligne花几分钟看了前言就说有错,最终果然如此.就象 是洪七公一看郭靖,就知道他有几分武功一样,呵呵,那七个人可都是人精哪." 我说:"早年在国内的时候就听人讲,数学会开会,华老的座位一定要在正中间,往 后是他的大弟子,二弟子,三弟子,等等,要是谁把苏步青排到了前面,那就惹了大 麻烦了." 黄教授笑着说:"华老那一茬人都是农村出身,所以难免把农村的陋习搬过来,但内 涵是一样的.其实洋人这儿也不例外,记得Polya在回忆录里说,他和Hermann Weyl 在ETH同事多年,但Weyl很少跟他说话,这个老家伙到老了也不明白,Weyl哪是不愿 跟他说话,根本就是看不上他,想想看,西毒欧阳锋怎么会愿意和智灵上人说话?会 几个大手印又能怎样?" 小胡也笑说:"我可就是做智灵上人的数学分析习题集过来的." 黄教授笑说:"看来你是练了一身藏传武功.说起来武林里面帮派芜杂,数学界也是 一样,山头林立,互相之间互不买帐,尤其在一些公立大学的数学系,山头之间为 了一些蝇头小利而往往斗得你死我活,乐此而不疲.每四年开一次的数学家大会, 整个儿就是一华山论剑,英雄排座次的战场,所以每次都热闹得不得了." 我说:"上次的ICM在北京开,进了人民大会堂,还他妈开了国宴,够过瘾的." 小胡说:"现在咱们中国人也开数学家大会了,今年就在香港,还要发金牌银牌呢." 黄教授说:"你知道什么,中国人开数学家大会,这叫清理门户,把各种逆子叛徒给 逐出门墙. 当然了,发发金牌银牌,除了奖掖后进,也有调济各个山头的意思." 我说:"黄兄,咱们身为海外游子,时刻也要关心祖国建设,是不是?你给我算算,中 国的数学什么时候能赶上世界一流?" 黄教授长叹一声:"哪有那么容易,说到底数学这东西是一种文化传统,没有几代人 的努力,根本一点希望都没有.你看看国内这些搞数学的,哪有一个象样的?整天吃 喝玩乐,研究的好象都不是数学.我觉得恰当地说,中国数学的水平非常类似中国 足球的水平,一路货色." 小胡笑说:"这不又输给日本队了么,球迷还闹了事." 黄教授也笑着说:"咱们中国不出球星,倒出不少足球流氓,数学界也是一样,老陈 岁数大了,回国后经常信口开河,一帮人跟着瞎起哄,欺负老年人,说中国要成数学 大国了,其实都在给自己捞好处,又碰上李铁映这个科盲,居然把这个叫成陈省身 猜想.我觉得这个猜想要加上一个必要条件,当中国队拿了世界杯冠军的时候." 我们三个都哈哈大笑起来,引来不少临桌的侧目. 小胡止住笑说:"黄教授,我今天算是开了眼界,你能不能再给我多讲讲数学界里的 人物?" 黄教授说:"我在这个行业里混了这么多年,各种各样的人物也都见过,见得多了之 后,也不知怎么了,越来越觉得这些数学家们都在武侠小说里见过,搞到后来我自 己也胡涂了,好象是生活在武侠里一样." 我说:"你到底见了些什么人?" 黄教授说:"比如说星宿老仙,东方不败,四大恶人,东邪西毒,南帝北丐,任我行,苗 人凤,左冷禅,苏星河,带头大哥,韦小宝,岳不群等等,有华山派,衡山派,少林派, 峨眉派,星宿派,有练九阴真经的,练葵花宝典的,逆行经脉的,走火入魔的,剽窃秘 芨的,还有破腹自杀的,什么都有." 小胡摇头说:"这些到底是谁呀?" 黄教授说:"你先别忙对号入座,以后慢慢就明白了." 我问:"谁是丁春秋?" 黄教授瞪我一眼说:"老怪,你这是明知故问."然后黄教授轻轻说了个名字. 看着小胡目瞪口呆的样子,黄教授和我都笑了起来. 3.女人. 我说:"黄兄,你把数学界比做武侠世界,我多少同意.可是有一点数学界和武侠截 然不同,在武侠小说里到处是美女缠在这些侠客身边,可你去看看,数学系有几个 女的?这里面又有谁是漂亮的?" 黄教授说:"这也难怪,女人天生就不应该学数学,其实不只是数学,任何理论科学, 到后来都是个体力活,需要长时间的concentration,而女人到了二三十岁,都要考 虑嫁人生孩子的问题,哪还有可能长时间地集中精力做数学?Weyl曾经说过,There are only two women in mathematics, one is not mathematician, one is not woman.呵呵,他说的这两个女人,一个是Sofia Kovalevskaya,另一个是Emmy Noether,这两位的画像现在还在我们系里挂着呢. Kovalevskaya长得漂亮,可她 的paper谁都知道是被她美色迷倒的老板Weierstrass代写的.至于Emmy Noether, 无论从长相到言行举止,没有一点象个女人的,整个一男的." 小胡说:"Weierstrass还这么不老实,真想不到." 黄教授笑着说:"相比现代数学界的几个糟糕老头子,Weierstrass还算是有情有义 的." 我说:"怪不得数学系的光棍特别多呢." 黄教授叹气说:"不单是数学系的女生少,一般象样点的女孩也不愿嫁给数学系的 人.一来没钱,二来数学系的人一做起问题来,其它什么都忘了,没法过日子.一个 数学问题,短则做几个月,长则几年,陷进去之后,每天走路想,吃饭想,连和老婆上 床都在想,不象一般人还有个上下班,这是他妈全天候24小时,每天都神神癫癫 的,做不出问题还要拿老婆当出气筒.聪明点的女孩谁愿意过这种不人不鬼的日子. " "哈哈哈哈..."我们笑得前仰后合. 黄教授接着说:"我还读研究生的时候,老板跟我说过,两个数学家相遇,第一个话 题肯定是数学,第二个话题肯定是Sex.我当时还半信半疑,后来才发现是千真万确. 你想,一堆大男人,整日里切磋武功做问题,闲下来的时候还能谈什么其它的?外边 的人来了,总觉得数学系里是成堆的色棍,每天不务正业谈论女人,不理解个中原 因." 我说:"费曼在自传里讲,有一次他大着胆子到Las Vegas逛妓院,到那里才发现那 儿的妓女认识他的大部分教授同事,费曼还纳闷,难道这里的婊子都是Caltech物 理系毕业的不成?" 黄教授笑着说:"你这故事多半是费曼自己编造的,为了给他自己的不轨行为打圆 场.数学系虽然色棍多,但多半是纸上谈兵,出一两个采花大盗不奇怪,但说人人如 此就有悖常理. 原因很简单,每天都在想问题,实在不会有太多其它空闲时间.给 你们讲个典型的小故事. 我在读书的时候有一个日本师兄,不但学问做得好,而 且为人谦虚有礼,和我们关系都很好. 有一段时间大概用功过度了些,师兄有些 厌倦,就到学校的酒吧去消遣,居然真的勾上了个漂亮的白人女孩,有那么几天这 两位手拉手在系里走来走去.过了几个星期我发现日本师兄又一个人鬼鬼祟祟地 在系里东躲西藏,我问他怎么回事,师兄直跳脚说,老子还要回来读paper做问题呢, 哪他妈有空整天陪她鬼混?呵呵,师兄本想逢场做戏,没想到撞上一个多情的,纠缠 不休,害得我这师兄在系里躲了几个月,全系传为笑谈.这一晃多少年了,现在师兄 在日本也当上教授了." 4.激情. 我说:"做问题到底有多大的吸引力,让你这师兄这么神魂颠倒,连女人都顾不上了?" 黄教授说:"罗素把这个叫the intoxicating feeling of sudden understanding,中文里应该叫顿悟吧,一个问题思考了很久,突然一瞬间明白了, 这种感觉,绝对是一种生理快感.Weil老先生曾经比较过这种快感和性高潮时的快 感,他的结论是两者各有千秋,但时间长短有所不同.性快感总是短时间的,哪怕你 他妈是练了藏传密宗吃了大补丸,了不起也就能折腾几十分钟,而顿悟的快感能 持续好几天.我的老朋友田刚在国内电视上说什么会当凌绝顶,一览众山小,不懂 的人只知道他在自吹自擂,其实他是在说这种快感,只不过不好明说罢了." 我笑说:"所以外人说数学系的人都是色迷迷的也是有道理的." 黄教授叹气说:"往深里讲这其实是一种激情,一种无法控制排山倒海的力量在推 你前进,任何搞数学的都会有亲身体会,但人的一辈子这种激情最多只有几次,现 在的数学体系浩大繁杂,要做出大的问题没有这种激情根本就没有可能.菲尔兹奖 只给40岁以下的是有道理的,40岁以上的人步入了中年,还会有个什么激情?荷尔 蒙分泌量已经不对了,该雄起时雄不了,还谈做什么数学." 我知道黄教授也40多了,而且和菲尔兹奖也只是擦身而过,就说:"黄兄,菲尔兹奖 之外还有Cole奖,Wolf奖,再说40岁以上真的不灵了?总会有些例外吧." 黄教授说:"我只知道一个例外,是Grothendieck.在退隐多年之后,1982年时, Grothendieck老先生突然在5个月内一气写下1600页的paper,真正的激情迸发,那 时他已是50出头的人了,了不起呀.你猜他的paper的标题是什么,The Long March Through Galois Theory,哈哈,Galois理论的长征,怎么样,够厉害的吧." 看小胡有些困惑的样子,我说:"长征对咱们中国人来说是一政治名词,历史名词, 最多也就是宣传队播种机,可是对西方人来说长征是一个非常浪漫的故事,意谓着 为了某种目标而历尽千辛万苦,最终取得胜利. 我记得美国老牌政治家布热津斯 基有一次在电视上教训几个小瘪三,说小子们,你们知道长征是什么,长征是从纽 约出发走到三藩,再从三藩走回来,然后再走两个来回!" 黄教授点头说:"是这样的,Grothendieck老先生对代数基本群的刚性有着超人的 领悟,他认为这完全决定了双曲曲线的同构类,以及曲线模空间的同构类.通过对 曲线以及模空间的胞腔分解和代数基本群的作用,老先生认为可以得到对Q上绝对 Galois群的精确描述,这就是他心里的长征." 看我们有些发晕,黄教授笑说:"算了算了,不和你们谈细节了,再给你们说个 Grothendieck的故事吧.你们知道Grothendieck老先生在盛年的时候就归隐田园, 从数学界消声匿迹了,二十几年前我老板刚刚毕业,在Rutgers当助教,有一天在餐 厅吃饭的时候,老板赫然看到Grothendieck,正抱着一个Rutgers的女生在亲热吃 饭呢.老板大着胆子上去打招呼, Grothendieck斜着眼看他问:'你是干什么的?' 老板说是做代数几何的,Grothendieck一乐说:'我对那东西已经不感兴趣了,现在 我在干更重要的事.'老板琢磨着这更重要的事就是搂着女孩吃饭,就胡说几句走 了." "过了一阵老板听说那个女孩跟着Grothendieck去法国了,忽忽又过了一年多,这 女的抱着一个刚出生的孩子又从法国跑回Rutgers来,举目无亲,只好找到我老板 来哭述,Grothendieck已经把她给抛弃了,显然这女人和小孩已成了老先生新长征 路上的绊脚石." 我笑说:"长征路上女人生了孩子,留在当地脱离大部队的不算太奇怪." 黄教授有些出神地说:"我最近听说这孩子已经长大,从哈佛毕业了. 二十多年一 晃过去,Grothendieck再也没有了消息,他老人家的万里长征,也该走了一大半了 吧." 时间不觉过去,夜已深了,饭馆里只剩了我们三个,掌柜的远远的在不耐烦地看我 们,我看黄教授已有几分醉意,就说:"黄兄,今天就到这吧,我们改日再来." 外面夜澜风静,街上依然车水马龙,我们再没说话,走到路口黄教授向我们挥挥手, 径自回去了. (XYS20050723) ◇◇新语丝(www.xys.org)(xys.dxiong.com)(xys.3322.org)(xys.dyndns.info)◇◇ ---------------------------------------------- ┌──┐┌┐ ┌──┐ ┌┐ ┌──┐┌──┐┌┐┌┐ │┌┐│││ │┌┐│ ││ │┌┐││┌─┘ \∨/ │┌┐│││ ││││ ││ │││││┌┐│ ││ └──┘└┘ └──┘ └──┘└──┘└──┘ └┘ 欢迎来到生物学/Biology板 |
xiaocu
该用户不存在
|
[保留帖] Re: 数学中的武林故事
安德烈·韦伊(André Weil,1906年5月6日—1998年8月6日)是20世纪一位大数学家 ,布尔巴基小组创办者之一。他是哲学家西蒙娜·韦伊的兄长。 韦伊生于巴黎,于巴黎、罗马和哥廷根学习,1928年获博士学位。他是犹太人,也是良 心的反抗者,在第二次世界大战爆发后,他从法国逃到芬兰。他的自传证实了一个有名 的轶闻:他在芬兰因涉嫌从事间谍活动被捕,因着罗尔夫·奈望林纳的介入才免于被枪 决。 战后韦伊往美国,在芝加哥大学任教,然后在普林斯顿高等研究院安定下来。 他在许多领域都作出实质的贡献,最重要的要算是代数几何和数论的深刻连系。他的成 就有数个韦伊猜想(后来由伯纳德·德沃克、亚历山大·格罗登迪克和皮埃尔·德利涅 证出),和函数域的黎曼猜想。他又为代数几何建立良好基础,并发现了韦伊表示,之 前Segal和Shale也把它引入量子力学,它为理解二次型的经典理论给了良好框架。 韦伊懂得欧洲多国语言,他采用挪威语字母?代表空集。他也有深刻造诣于数学史,这 从布尔巴基的《数学史》可以看得出来。布尔巴基出版《数学史》是他提出的。 韦伊在1979年获得沃尔夫数学奖,翌年获得斯蒂尔奖,1994年获得京都基础科学赏。 埃米·诺特(Emmy Noether,1882年3月23日-1935年4月14日)是20世纪初一个才华洋 溢的数学家。她善于借透彻的洞察建立优雅的抽象概念,再将之漂亮地形式化。 Emmy Noether她生于德国巴伐利亚州(Bavaria)埃朗根(Erlangen),取名阿马莉·诺特 (Amalie Noether)。她的父亲马克斯·诺特(Max Noether)是杰出数学家,埃朗根的教 授。她早期没有显露突出数学才干,十多岁时还比较喜欢音乐和跳舞。 诺特由保罗·戈尔丹(Paul Gordan)指导在1907年取得博士学位,声誉很快传遍了世界 ,但哥廷根大学拒绝让她教学。诺特的同事大卫·希尔伯特要在大学简介中假借他自己 的名宣传诺特的课程。那时展开了一场漫长的争论,反对她的人质疑他们国家的士兵回 国后,发现要跟一个妇人学习,他们会有何感想。又如果让她留在学院,便准许了她在 学术评议会投票。希尔伯特说:“我看不出候选人的性别会阻挠她申请私人讲师(Priv atdozent)。说到底大学又不是澡堂。”她最终在1919年获学院接纳。诺特是犹太人, 被迫在1933年逃离纳粹德国,加入在美国布林莫尔(Bryn Mawr)的学院。 她对数学和理论物理作出非常重要的贡献。数学上,她研究不变量理论和非交换代数; 物理上,她导出了非常关键而且美丽的结果,称为诺特定理。因此,凡 不变量的命题 是对应物理系统的广义化转换(物理学家称之为对称性)都翻译成守恒定律。现代物理 相当多地建基于对称性的种种性质,诺特定理的结果就构成了现代物理基础的一部份。 1921年,诺特引进了交换环的理想的升链条件,证明了这些环存在基本分解(称为拉斯 克-诺特定理)。环的理想若适合升链条件,就称为诺特环。 她在1935年于布林莫尔逝世。 科瓦列夫斯卡娅(Kowalewska,Sofia Vassilievna,1850年-1891年)是俄国女数学家。 德国格丁根大学哲学博士。曾任瑞典斯德哥尔摩大学教授。在偏微分方程和刚体旋转理 论等方面有重要贡献。1888年因解决刚体绕定点旋转问题而获得法兰西科学院鲍廷奖, 并成为圣彼得堡科学院院士,是俄国历史上获此称号的第一个女性。 亚历山大·格罗登迪克(Alexander Grothendieck,1928年3月28日生于柏林),犹太 裔数学家。现已隐居。 ---------------------------------------------- Home is behind, the world ahead There are many paths to tread Through shadow, to the edge of night until all the stars are alight Mist and shadow, cloud and shade All shall fade, all shall fade |
xiaocu
该用户不存在
|
[保留帖] Re: 数学中的武林故事
贴一篇老文: 仿佛来自虚空: ---------------------------------------------- 前言:本文是Notices2004年10月和11月份Allyn Jackson 关于Alexandre Grothendieck文章的翻译。 每一门科学,当我们不是将它作为能力和统治力的工具,而是作为我们人类世代以来努 力追求的对知识的冒险历程,不是别的,就是这样一种和谐,从一个时期到另一个时期 ,或多或少,巨大而又丰富:在不同的时代和世纪中,对于依次出现的不同的主题,它 展现给我们微妙而精细的对应,仿佛来自虚空。 ——《收获与播种》,第20页 亚历山大-格洛腾迪克是一位对数学对象极度敏感,对它们之间复杂而优美的结构有着 深刻认识的数学家。他生平中的两个制高点——他是高等科学研究院(IHES)的创始成 员之一,并在1966年荣获菲尔兹奖——就足以保证他在二十世纪数学伟人殿里的位置。 但是这样的叙说远不足以反映他工作的精华,它深深植根于某种更有机更深层的东西里 面。正如他在长篇回忆录《收获与播种》中所说: “构成一个研究人员的创造力和想象 力的品质的东西,正是他聆听事情内部声音能力”(原书第27页)。今天格洛腾迪克自 己的声音,蕴含在他的著作中,到达我们耳中,就如来自虚空:如今76岁的高龄,他已 经在法国南部的一个小村落里隐居十多年了。 用密歇根大学海曼-巴斯的话来说,格洛腾迪克用一种“宇宙般普适”的观点改变了整 个数学的全貌。如今这种观点已经如此深入吸收到数学研究里面,以至于对新来的研究 者来说,很难想象以前并不是这样的。格洛腾迪克留下最深印迹的是代数几何学,在其 中他强调通过发现数学对象间的联系来理解数学对象本身。他具有一种极其强大、几乎 就是来自另外一个世界的抽象能力,让他能够从非常普适的高度来看待问题,而且他使 用这种能力又是完美无缺的精确。事实上,从二十世纪中叶开始,在整个数学领域里不 断加深的一般化和抽象化的潮流,在很大程度上归功于格洛腾迪克。同时,那些为一般 化而一般化,以至于去研究一些毫无意义或者没有意思的数学问题,是他从来不感兴趣 的。 格洛腾迪克在二次世界大战期间的早期生活充满混乱和伤害,并且他的教育背景并不是 最好的。他如何从这样缺乏足够教育的开始脱颖而出,成为世界上的领袖数学家之一, 是一出精彩的戏剧——同样,在1970年,正当他最伟大的成就在数学研究领域开花结果 ,而且数学研究正深受他非凡个性影响的时候,他突然离开了数学研究,也是富有戏剧 性。 早期生活 对于我来说,我们高中数学课本最令人不满意的地方,是缺乏对长度、面积和体积的严 格定义。我许诺自己,当我有机会的时候,我一定得填补这个不足。 ——《收获与播种》,第3页 2003年八月以八十岁高龄过世的普林斯顿高等研究院的阿曼德-波莱尔回忆起他在194 9年11月在巴黎一次布尔巴基讨论班上第一次见到格洛腾迪克的情形。在讲座的空歇时 间,当时二十多岁的波莱尔正与时年45岁,法国数学界那时的一位领袖人物查尔斯-爱 尔斯曼聊天。波莱尔回忆说,此时一个年轻人走到爱尔斯曼面前,不作任何介绍,当头 就问:“你是拓扑群方面的专家吗?”为了显示自己的谦虚,爱尔斯曼回答说是的,他 知道一点点关于拓扑群的知识。年轻人坚持说:“可我需要一个真正的专家!”这就是 亚历山大-格洛腾迪克,时年21岁——性急,热情,确切说不是无礼,但对社交礼仪差 不多一无所知。波莱尔记得格洛腾迪克当时问了一个问题: 每个局部拓扑群是否是整体 拓扑群的芽?波莱尔自己恰好知道一个反例。这个问题表明格洛腾迪克那个时候就已经 考虑用很普适的观点还考虑问题了。 1940年代末在巴黎度过的时期是格洛腾迪克首次和数学研究世界的真正接触。在此之前 ,他的生活——至少就我们所知道的情况而言——几乎没有什么可以预示他注定成为这 个世界一位具统治地位的人物。大多关于格洛腾迪克的家庭背景和早期生活的情节都是 粗略或者未知的。穆斯特大学的温弗雷德-沙劳正在撰写一部格洛腾迪克的传记,因而 对他的这段历史作了详细研究。下面我对格洛腾迪克生平的简略描述的大部分信息来自 于对沙劳的一次访谈或者来自于他收集的关于格洛腾迪克生平的资料。 格洛腾迪克的父亲,其名字或许叫亚历山大-沙皮诺,于1889年10月11日生于乌克兰诺 夫兹博科夫的一个犹太人家庭。沙皮诺是一个无政府主义者,参加过20世纪早期沙皇俄 国多次暴动。在17岁的时候他被捕,尽管成功逃脱死刑的判决,但是数次越狱又被抓获 ,让他一共在狱中呆了大约10年时间。格洛腾迪克的父亲,有时候常常被人混淆为另外 一个更有名的亚历山大-沙皮诺,他也参加过了多次政治运动。那位沙皮诺,曾在约翰 -里德的名著《震撼世界的10天》里面出现过,移民去了纽约并于1946年去世,那时候 ,格洛腾迪克的父亲已经过世4年了。另外一个关于格洛腾迪克父亲的显著特征是他只 有一只手。根据贾斯汀-巴姆比(她在1970年代曾经与格洛腾迪克生活过一段时间,并 且和他育有一个儿子)的话来说,他的父亲是在一次逃避被警察抓获而尝试自杀的行动 中丢失他的一只胳膊的。格洛腾迪克本人可能不知情地帮助造成这两个沙皮诺的混淆: 举个例子,高等科学研究院的皮埃尔-卡迪耶尔提到格洛腾迪克坚持里德的书里面一个 人物是他父亲。 小朋友时代结束。下面牛人们将一个个登场。 1921年,沙皮诺离开俄国,从那时起,终其一生他都是一个无国籍人。为了隐瞒他的政 治过去,他获得了一份名叫亚历山大-塔纳洛夫的身份证明,从此他就用这个新的名字 。他在德国,法国和比利时都呆过一段时间,和无政府主义者和其他革命团体均有联系 。在1920年代中期一个激进份子圈子里面,他认识了格洛腾迪克的母亲,琼娜(汉卡) -格洛腾迪克。她于1900年8月21日出生在汉堡一个中产阶级路德教徒家庭里。出于对 她所受的传统教育的反叛,她被吸引来到柏林,当时那里是先锋派和社会革命运动的温 床。她和沙皮诺都渴望成为作家。他从没有发表过什么东西,而她在报纸上发表过一些 文章;特别的,在1920年到1922年间她为一家左翼报纸Der Pranger写稿,当时它正在 调查生活在汉堡社会底层的妓女们卖淫的真正原因。很久以后,在1940年代,她写了一 本自传小说Eine Frau(《一个小女人》),不过从未发表。 在他一生的大部分时间,塔纳洛夫是一位街头摄影师,这项工作让他可以独立生活,又 不用违背自己的无政府主义信仰去被人雇佣。他和汉卡曾经都结婚过,而且都各有一个 前次婚姻所生的孩子,她有个女儿而他有个儿子。亚历山大-格洛腾迪克于1928年3月 28日出生于柏林,其时他们家由汉卡,塔纳洛夫,汉卡的女儿、比亚历山大大四岁的麦 娣组成。他被家人和后来的密友们叫做舒瑞克;他父亲的昵称叫萨沙。尽管他从来没有 见到过他的同父异母哥哥,格洛腾迪克将他在1980年代完成的手稿A La Poursuite de s Champs(《探索Stacks》)献给了他。 1933年,纳粹上台后,沙皮诺从柏林逃到了巴黎。同年12月,汉卡决定追随丈夫,于是 她将儿子留在汉堡附近布兰肯尼斯的一个寄养家庭里面;麦娣则留在柏林一个收养残疾 人的机构里,尽管她并不是残疾人(《收获与播种》,472-473页)。这个寄养家庭的 家长是威尔海姆-海铎,他的不平凡的一生在他的传记Nur Mensch Sein里面得到详细 描述;同书里面有格洛腾迪克1934年的一张照片,而且在书中他被简要提起。海铎曾经 是路德教会牧师和军官,随后他离开教会,成为小学教师,同时是一位Heipraktiker( 这个词现在可以粗略翻译为“另类医学的从业者”, 江湖医生)。1930年他创立了理 想主义政党人道主义党,此党后来被纳粹认定为非法。海铎自己有4个孩子,他和妻子 代格玛,出于他们信仰的基督教义务,又收养了好几个孩子,他们都由于在二战前那段 混乱日子不得不与自己的家庭分开。 格洛腾迪克从5岁到11岁,在海铎家里呆了5年多,并且开始上学。代格玛-威尔海姆在 回忆录里面说小亚历山大是一位非常自由,特别诚实,毫无顾忌的小孩。在他生活在海 铎家这几年里,格洛腾迪克只从他母亲那里收到几封信,他父亲根本就没有给他写过信 。尽管汉卡仍然还有些亲戚在汉堡,从没有人来看过他。突然和父母分离,对格洛腾迪 克是非常伤心的事情,这可以从《收获与播种》书中看出(473页)。沙劳认为小亚历 山大可能在海铎家里过得并不愉快。从两个无政府主义者作家长的不受拘束的家里出来 ,海铎家里的比较严肃的氛围可能比较让他觉得郁闷。事实上,他和海铎家附近其他一 些家庭更亲近些,成年以后他仍然多年坚持给他们写信。他也给海铎家写信,并且数次 回来拜访汉堡,最后一次是在1980年代中期。 1939年,战争迫在眉睫,海铎夫妇所承受政治压力也越来越大,他们不能够再抚养这些 孩子了。格洛腾迪克这个情况更困难些,因为他看上去就象犹太人。尽管他父母的确切 地址不为人知,但是代格玛-海铎写信给法国驻汉堡领事馆,设法给时在巴黎的沙皮诺 和时在尼姆兹的汉卡带去消息。联系到他父母以后,11岁的格洛腾迪克被送上从汉堡到 巴黎的火车。1939年5月他和父母团聚,他们在一起度过了战前的短暂时光。 目前我们并不确切知道当格洛腾迪克在汉堡的时候,他的父母干了些什么的细节,但可 以肯定他们政治上仍然很活跃。他们跑到西班牙参加了西班牙内战,当佛朗哥获胜后又 逃回法国。由于他们的政治活动,汉卡和她的丈夫在法国被当作危险的外国人。格洛腾 迪克回到他们身边不久,沙皮诺就被送入Le Vernet的国际集中营,此地是所有法国集 中营中最糟糕的。很可能从那以后他再也没有看到他的妻子和儿子了。1942年8月,他 被法国政府驱逐到奥斯维辛,在那里他被杀害。麦娣那段时期如何度过我们并不清楚, 但最终她和一位美国士兵结婚,并移居美国;她于几年前过世。 1941年汉卡和她的儿子被送入Mende附近Rieucros的战俘收容所。就战俘收容所而言, Rieucros的这个算比较好的,格洛腾迪克被允许到Mende去读高中。然而,这种生活被 剥夺了自由,又很不确定。他告诉巴姆比说,他和他母亲时常被那些不知道汉卡是反对 纳粹的法国人故意躲开。有一次他从收容所跑了出去,想去刺杀希特勒,但他很快就被 抓获,送了回来。“这很可能让他丢了性命的”,巴姆比说。格洛腾迪克一生以来都很 强壮,是一个很优秀的拳击手,他将此归功于这段时期,因为他常常是被伏击的对象。 2年后,母子俩又分开了:汉卡被送到另一个战俘收容所,而她的儿子则最终送到小镇 Chambon-sur-Lignon。安德烈-特洛克姆,一位新教徒牧师,将这个山区休假胜地C hambon镇变成了反抗纳粹占领的据点和犹太人及其他被战争危及生命的人们的避难所。 在那里格洛腾迪克被送到由一个瑞士组织成立的儿童之家。他在Chambon镇专门为年轻 人的教育而设立的Cevenol学院上学并得到业士学位(即通过中学毕业会考)。Chambo n人的英雄行为给了逃难者安全,但是生活却是很不稳定的。在《收获与播种》里,格 洛腾迪克提到当时周期性的抓捕犹太人的行动迫使他和其他同学在森林里躲藏好几天( 第2页)。 在此书中,他也提到些对Mende和Chambon上学情况的回忆。很显然,尽管少年时遇到的 诸多困难和混乱,他从很小的时候起就有很强的内在理解能力。在他的数学课上,他不 需要老师的提示就能区分什么东西是深层的、什么是表面的,什么是正确的、什么是错 误的。他发现课本上的数学问题老是重复,而且经常和那些可以赋予它意义的东西隔离 开。“这是这本书的问题,不是我的问题”,他写道。当有问题引起他注意时,他就完 全忘我的投入到问题中去,以至于忘记时间(第3页)。 从蒙彼利尔到巴黎到南锡 我的微积分老师舒拉先生向我保证说数学上最后一个问题已经在二三十年前就被一个叫 勒贝格的人解决了。确切地说,他发展了一套测度和积分的理论(真是很令人惊讶的巧 合!),而这就是数学的终点。 《收获与播种》,第4页 1945年5月欧战结束的时候,亚历山大-格洛腾迪克17岁。他和母亲居住在一蒙彼利尔 郊外盛产葡萄地区的一个叫Maisargues的村子里。他在蒙彼利尔大学上学,母子俩靠他 的奖学金和葡萄收获季节打零工来生活;他母亲也做些清扫房屋的工作。不久以后他呆 在课堂的时间就越来越少,因为他发现老师全是照本宣科。根据让-丢多涅的话来说, 那是的蒙彼利尔是"法国大学里面教授数学最落后的地区之一"。 在这种不那么令人激昂的环境下,格洛腾迪克将他在蒙彼利尔三年的大部分时间放在弥 补他曾经觉察到的高中教科书上的缺陷,即给出令人满意的长度、面积和体积的定义。 完全靠自己的努力,他实际上重新发现了测度论和勒贝格积分的概念。这个小故事可以 说是格洛腾迪克和阿尔伯特-爱因斯坦两个人生平中几条平行线之一:年轻的爱因斯坦 根据自己的想法发展了统计物理理论,后来他才知道这已经由约舒亚-维拉德-吉布斯 发现了! 1948年,在蒙彼利尔完成理学学士课程后,格洛腾迪克来到了巴黎,法国数学的主要中 心。1995年,在一篇发表于一法文杂志上关于格洛腾迪克的文章中,一位名叫安德烈- 马格尼尔的法国教育官员回忆起格洛腾迪克的去巴黎求学的奖学金申请。马格尼尔让他 说明一下在蒙彼利尔干了些什么。"我大吃一惊,"文章引用马格尼尔的话说,"本来我 以为20分钟会面就足够了,结果他不停的讲了两个小时,向我解释他如何利用'现有的 工具',重新构造前人花了数十年时间构建的理论。他显示出来非凡的聪慧。"马格尼尔 接着说:"格洛腾迪克给了我这样的印象:他是一位才气惊人的年青人,但是所受的苦 痛和自由被剥夺的经历让他的发展很不均衡。"马格尼尔立刻推荐格洛腾迪克得到这个 奖学金。 格洛腾迪克在蒙彼利尔的数学老师,舒拉先生推荐他到巴黎去找他以前的老师嘉当。不 过到底是父亲,时年快八十的埃里-嘉当,还是他的儿子,四十多岁的亨利-嘉当,格 洛腾迪克并不知道(《收获与播种》,第19页)。在1948年秋天到达巴黎后,他给那里 的数学家看在蒙彼利尔自己做的工作。正如舒拉所说,那些结果已经为人所知,不过格 洛腾迪克并不觉得沮丧。事实上,这段早期孤独一人的努力可能对他成为数学家起了至 关重要的作用。在《收获与播种》中,格洛腾迪克谈到这段时期时说:"在根本不知情 的情况下,我在孤独工作中学会了成为数学家的要素--这些没有一位老师能够真正教给 学生的。不用别人告诉我,然而我却从内心就知道我是一位数学家:也就是说,完全从 字面上理解,'做'数学的人--就好像人们'做'爱一样。" 他开始参加亨利-嘉当在高等师范学校开设的传奇性的讨论班。这个讨论班采用了一种 格洛腾迪克在以后的职业生涯更严格化的模式:每一年所有的讨论围绕一个选定的主题 进行,讲稿要系统的整理出来并最终出版。1948-1949年嘉当讨论班的主题是单形代数 拓扑和层论--当时数学的前沿课题,还没有在法国其他地方讲授过。事实上,那时离让 -勒雷(Jean Leray)最初构想层的概念并没有多久。在嘉当讨论班上,格洛腾迪克第一 次见到了许多当时数学界的风云人物,包括克劳德-夏瓦雷(Claude Chevalley),让- 德尔萨(Jean Delsarte),让-丢多涅(Jean Dieudonne),罗杰-苟德曼(Roger Godem ent),洛朗-施瓦兹(Laurent Schwartz)和安德烈-韦依(Andre Weil)。其时嘉当的学 生有让-皮埃尔-塞尔(Jean-Pierre Serre)。参加嘉当讨论班以外,他还去法兰西学 院听勒雷开设的一门介绍当时很新潮的局部凸空间理论的课程。 作为几何学家埃里-嘉当的儿子,自己本人又是一位杰出的数学家,并且又是巴黎高师 的教授,从多个方面来看亨利-嘉当都是巴黎精英数学家的中心。而且他还是战后少数 几位努力创造条件与德国同行们交流的法国数学家之一,尽管他自己很清楚战争带给的 惨痛:他的弟弟参加了抵抗德国占领的地下运动,结果被德国人抓获并斩首。嘉当和当 时的许多一流数学家--比如爱尔斯曼,勒雷,夏瓦雷,德尔萨,丢多涅和韦依--都有一 个共同的背景,他们是"高师人",即为法国高等教育的最高学府巴黎高等师范学校的毕 业生。 当格洛腾迪克加入嘉当讨论班的时候,他还是个外来人:这不仅仅是说他居住在战后法 国而又讲德语,而且因为他与其他参加者比较起来显得特别贫乏的教育背景。然而在《 收获与播种》里,格洛腾迪克说他并不觉得象是圈子里面的陌生人,并且叙述了他对在 那受到的"善意的欢迎"的美好回忆(第19-20页)。他的坦率直言很快就引起大家的注 意:在给嘉当100岁生日的颂词中,Jean Cerf回忆说,当时在嘉当讨论班上看到"一个 陌生人(即格洛腾迪克),此人从屋子后部随意向嘉当发话,就如同和他平起平坐一样 "。格洛腾迪克问问题从不受拘束,然而,他在书上写道,他也发现自己很难明白新的 东西,而坐在他旁边的人似乎很快就掌握了,就象"他们从摇篮里就懂一样"(第6页) 。这可能是其中一个原因,促使他在嘉当和韦依的建议下,于1949年10月离开巴黎的高 雅氛围去了节奏缓慢的南锡。另外,如丢多涅所言,格洛腾迪克那时候对拓扑线性空间 比对代数几何更感兴趣,因此他去南锡恰当不过了。 南锡的学习生涯 (我在这里受到的)欢迎弥漫开来… 从1949年首次来到南锡的时候我就受到这样的欢 迎,不管是在Laurent 和Helene Schwartz的家(那儿我就好像是一个家庭成员一样) ,还是在Dieudonne的或者Godement的家(那里也是我经常出没的地方之一)。在我初 次步入数学殿堂就包容在这样挚爱的温暖中,这种温暖虽然我有时易于忘记,对我整个 数学家生涯非常重要。 《收获与播种》,第42页 1940年后期,南锡是法国最强的数学中心之一;事实上,虚构人物尼古拉-布尔巴基据 说是“Nancago大学”的教授,就是指在芝加哥大学的韦依和在南锡大学的他的布尔巴 基同伴。此时南锡的教员包括德尔萨,Godement,Dieudonne和Schwartz。格洛腾迪克 的同学包括Jacques-Louis Lions和Bernard Malgrange,他们和格洛腾迪克一样均是 Schwartz的学生;以及Paulo Ribenboim,时年20岁,差不多与格洛腾迪克同时来到南 锡的巴西人。 根据现在是(加拿大)安大略省Queens大学名誉教授Ribenboim的话来说,南锡的节奏 不象巴黎那么紧张,教授们也有更多时间来指导学生。Ribenboim说他感觉格洛腾迪克 来到南锡的原因是因为他基础知识缺乏以致很难跟上Cartan的高强度讨论班。这不是格 洛腾迪克出来承认的,“他不是那种会承认自己也会不懂的人!”Ribenboim评论说。 然而,格洛腾迪克的超凡才能是显而易见的,Ribenboim记得自己当时将他作为完美化 身来景仰。格洛腾迪克可能会变得非常极端,有时候表现得不太厚道。Ribenboim回忆 说:“他不是什么卑鄙的人,只是他对自己和别人都要求很苛刻.”格洛腾迪克只有很 少几本书;他不是从读书中去学习新的知识,而宁愿自己去重新建构这些知识。而且他 工作得很刻苦。Ribenboim还记得Schwartz告诉他:你看上去是个很友善、均衡发展的 年轻人;你应该和格洛腾迪克交个朋友,一起出去玩玩,这样他就不会整天工作了。 其时Dieudonne和Schwartz在南锡开设了关于拓扑线性空间的讨论班。如Dieudonne在[ D1]所说,那时候Banach空间及其对偶已经理解得很清楚了,不过局部凸空间的概念当 时刚刚引入,而关于他们的对偶的一般理论还没有建立起来。在这个领域工作一段时间 后,他和Schwartz遇到了一系列的问题,他们决定将这些问题交给格洛腾迪克。数月之 后,他们大吃一惊地得知格洛腾迪克已经将所有的问题都解决了,并在继续研究泛函分 析的其他问题。“1953年,应当给予他博士学位的时候,有必要在他写的六篇文章中选 取一篇做博士论文,可每一篇都有好的博士论文的水准,”丢多涅写道。最后选定作为 论文的是“拓扑张量积和核空间”,这篇文章显示出他的一般性思考的初次征兆,而这 将刻划格洛腾迪克的整个数学生涯。核空间的概念,在目前已经得到了广泛应用,就是 首先在这篇文章里面提出的。Schwartz在巴黎一次讨论班上宣传了格洛腾迪克的结果, 其讲稿“格洛腾迪克的张量空间”发表于1954年[Schwartz]。此外,格洛腾迪克的论 文作为专著1955年在美国数学会的Memoir系列出版;此书[GThesis]在1990年第七次重 印。 格洛腾迪克在泛函分析方面的工作“相当出色”,加州大学洛山矶分校的Edwards E. Effors评论说。“他可能是第一个意识到二战后迅猛发展的代数和范畴工具可以用来研 究如此高度解析的数学分支泛函分析的人了。”从某些方面来说,格洛腾迪克走在他的 时代的前面,Effors注意到至少花了15年时间,格洛腾迪克的工作才结合到主流的Ban ach空间理论中去,这其中部分原因是大家对采用他的更代数的观点不积极。Effors还 说道,近年来由于Banach空间理论的“量子化”,而格洛腾迪克的范畴论的方法特别适 用于这种情况,他的工作的影响进一步得到加强。 尽管格洛腾迪克的数学工作已经得到很有前途的开始,他的个人生活还没有安定下来。 在南锡他和母亲住在一起,根据Ribenboim的回忆,她由于肺结核偶尔会卧床不起。她 是在收容所染上这种疾病的。就在这时候她开始写自传《小女人》的。格洛腾迪克和管 理他和他母亲寄住的公寓的一位年老妇人的关系让他有了第一个孩子,一个名叫塞吉的 儿子:塞吉主要由母亲抚养。完成他的博士学位后,格洛腾迪克找到永久职位的希望很 小:他是无国籍人,而那时在法国非公民很难找到永久工作。想成为法国公民就得去参 军,而格洛腾迪克拒绝这样做。从1950年起他通过国家科学研究中心(CNRS)有个职位 ,不过这个职位更象奖学金,而不是永久性的。有段时间他甚至考虑去学做木匠来赚钱 谋生(《收获与播种》,第1246页)。 Laurent Schwartz于1952年访问了巴西,给那里的人说起他这个才华横溢的学生在法国 找工作遇到的麻烦。结果格洛腾迪克收到圣保罗大学提供给他的访问教授职位的提议, 他在1953年和1954年保持了这个职位。根据当时为圣保罗大学学生、现在是Rutgers大 学名誉教授的Jose Barros-Neto的话来说,格洛腾迪克(和大学)做了特别安排,这 样他可以回巴黎参加那里秋天举行的讨论班。由于巴西数学界的第二语言是法语,教学 和与同事交流对格洛腾迪克来讲是件很容易的事情。通过去圣保罗,格洛腾迪克延续了 巴西和法国的科学交流的传统:Schwartz之外,韦依、丢多涅和德尔萨都在1940和195 0年代访问过巴西。韦依1945年一月到圣保罗,在那里一直呆到1947年秋天、他转赴芝 加哥大学的时候。法国和巴西的数学交流一直延续到现在。里约热内卢的纯粹与应用数 学研究所(IMPA)就有一个促成许多法国数学家到IMPA去的法-巴合作协议。 在《收获与播种》一书中,格洛腾迪克将1954年形容为“令人疲倦的一年”(163页) 。整整一年时间,他不成功地试图在拓扑线性空间上的逼近问题上获得一些进展,而这 个问题要到整整20年后才被一种和格洛腾迪克尝试的办法完全不同的方法解决。这是“ 我一生唯一一次感觉做数学是如此繁重!”他写道。这次挫折给了他一个教训:不管何 时,要有几个数学“铁器在火中”,这样如果一个问题被发现很难解决,就可以在别的 问题上下功夫。 现在为圣保罗大学教授的Chaim Honig,当格洛腾迪克在那儿的时候是数学系的助教, 他们成了好朋友。Honig说格洛腾迪克过着一种斯巴达式的孤独生活,靠着牛奶和香蕉 过日子,将自己完全投入到数学中。Honig有次问格洛腾迪克他为什么选择了数学。格 洛腾迪克回答说他有两个爱好,数学和音乐,他选择了数学是因为他觉得这样可能更容 易谋生些。他的数学天赋是如此显而易见,Honig说,“我当时相当惊讶他竟然在数学 和音乐间犹豫不决。” 格洛腾迪克计划和当时在里约热内卢的Leopoldo Nachbin一起合写一本拓扑线性空间的 书,不过这本书从来没有实质化过。然而,格洛腾迪克在圣保罗教授了拓扑线性空间这 门课程,并撰写了讲义,这个讲义后来由大学出版了。Barros-Neto是班上的学生,他 写了讲义上的一个介绍性章节,讲述一些基本的必需知识。Barros-Neto回忆说当格洛 腾迪克在巴西的时候说起过要转换研究领域。他“很雄心勃勃,”Barros-Neto说道, “你可以感觉到这个行动——他应该做些很根本、重要而又基础的东西。” 新星升起 这个最本质的东西就是每次塞尔会强烈感觉到某个陈述下隐含着的丰富意义,而这个陈 述在字面意义上讲,无疑让我既不感到兴奋,也不觉得无味——而且他可以“传输”这 种对如此内蕴丰富、实在而又神秘的实质的感知——这种感知在同一时候就是理解这个 实质的渴望,以至看透它的本质。 《收割与播种》,第556页 格勒诺贝尔大学的Bernard Malgrange 回忆起当格洛腾迪克写完论文后,他宣称自己不 再对拓扑线性空间感兴趣了。“他告诉我,‘这里面不再有东西可做了,这个学科已经 死了,’”Malgrange回忆道。当时学生按要求需要准备一份“第二论文”,此文不必 包含原创性的工作,其用意在于让学生展示对和自己博士论文研究相隔很远的一门数学 领域的理解深度。格洛腾迪克的第二论文是关于层论的,这个工作或许埋下了他对代数 几何的兴趣的种子,而这将是他做出最伟大成就的地方。在巴黎完成格洛腾迪克的论文 答辩后,Malgrange记得他自己、格洛腾迪克和亨利-嘉当挤在一辆出租车上去Lauren t施瓦兹家里吃午饭。他们坐出租是因为Malgrange在滑雪的时候摔断了腿。“在车上, 嘉当告诉格洛腾迪克他叙述层论时犯的一些错误,”Malgrange回忆说。 离开巴西后,格洛腾迪克1955年在堪萨斯大学度过,可能是受到N. Aronzajn的邀请[C orr]。在那里格洛腾迪克开始投入到同调代数研究中去。正是在堪萨斯他写了“关于同 调代数的若干问题”这篇文章,此文在专家圈子里面被非正式地称为“Tohoku文章”, 由于此文发表在The Tohoku Mathematical Journal(《东北数学期刊》)上。此文是同 调代数的经典,发展了嘉当和Eilenberg关于模的工作。也是在堪萨斯的时候,格洛腾 迪克写了“带结构层的纤维空间的一般理论’一文,此文作为国家科学基金(National Science Foundation, NSF)的一个报告发表。这个报告发展了他关于非交换上同调的 初步想法,此领域在后来他会在代数几何的架构下再次触及。 就是在这时候,格洛腾迪克开始和法兰西学院的让-皮埃尔 塞尔通信。他起初和塞尔 在巴黎相识,而后来在南锡时又见过面。他们信件的精选在2001年出版了法文原版,在 2003年出版了法英对照版[Corr]。这是一段长期而又硕果累累的交流的开始。这些信件 显示了两个非常不同的数学家的深厚而又充满活力的数学联系。格洛腾迪克表现出天马 行空般的想象力,而它又常常被塞尔的深刻理解和渊博知识带回到地面。有时候在信中 格洛腾迪克会表现出很令人惊讶的无知:比如说,有一次他询问塞尔黎曼zeta函数是否 有无穷多零点([Corr],第204页)。“他的经典代数几何知识实质上等于零,”塞尔回 忆说,“我自己的经典代数几何知识比他稍微好点,但好得不多,但是我试着去帮助他 。可是…有这么多未解决的问题,所以这不是很重要。”格洛腾迪克不是那种了解最新 文献的人,很大程度上他依靠塞尔来了解目前数学界正在干些什么。在《收获与播种》 里,格洛腾迪克写道,他学习到的大部分几何知识,除去他自学的外,全学自于塞尔( 第555-556页)。不过塞尔不仅仅是教给格洛腾迪克知识;他能够将要点融会贯通,然 后用一种格洛腾迪克发现非常具有说服力的方法叙述出来。格洛腾迪克将塞尔叫着“引 爆器”,一个提供火花,将导火索点燃,促使观点大爆炸的人。 确实,格洛腾迪克将他工作的许多中心主题都归因于塞尔。比如说,就是塞尔在1955年 将韦依猜想用上同调的语言介绍给格洛腾迪克——这种语言在韦依最初提出猜想的时候 是没有明显给出的,而它却正是可以吸引格洛腾迪克的地方(《收获与播种》,840页 )。通过对韦依猜想做“凯莱”类比的想法,塞尔也促使了格洛腾迪克的所谓“标准猜 想”的提出,此猜想更加一般化,而韦依猜想只是其中一个推论(《收获与播种》,第 210页)。 在堪萨斯呆了一年后,格洛腾迪克在1956年回到法国的时候,在CNRS谋得了一个位置, 大部分时间里他呆在巴黎。他和塞尔继续通信,并且经常通电话讨论问题。就在此时格 洛腾迪克开始更深入地研究拓扑和代数几何。他脑子里“充溢着想法,”阿曼德-波莱 尔回忆说,“我很确定某些一流的工作必将出自于他。不过最后(从他那里)出来的比 我想象的甚至还要高出很多。这就是他的Riemann-Roch定理,一个相当美妙的定理。 它真是数学上的一个杰作。” 经典形式的Riemann-Roch定理在19世纪中叶得到证明。它讨论的问题是:在一个紧致 黎曼曲面上,由那些极点在给定的有限多个点上,且具有最多给定次数的阶的亚纯函数 构成的空间的维数是多少?问题的答案就是Riemann-Roch公式,它将维数用曲面的不 变量来表达——从而提供了曲面的解析性质和拓扑性质的丰富联系。弗里德里希-赫兹 布鲁克(Friedrich Hirzebruch)在1953年做出了一个巨大的进展,其时他将Riemann- Roch定理推广到不仅适用于紧致曲面,而且适用于复数域上的射影非奇异簇的情况。整 个数学界都在欢呼这项伟业,它可能是这个问题的盖棺之语了。 “此时格洛腾迪克走了出来,说道:‘不,黎曼-洛赫定理不是一个关于簇的定理,而 是一个关于簇间态射的定理’,”普林斯顿大学的尼克莱斯-卡兹说,“这是一个根本 性的新观点…整个定理的陈述完全改变了。”范畴论的基本哲学,也就是大家应该更加 注意的是对象间的箭头(态射),而不是对象自身,才刚刚开始在数学上取得一点影响 。“格洛腾迪克所做的事情就是将这种哲学应用到数学上很困难的一个论题上去,”波 莱尔说,“这真的很符合范畴和函子的精神,不过人们从没有想过在如此困难的论题上 使用它… 如果人们已经知道这个陈述,并且明白它在说什么,可能别的某个人可以证 明这个陈述。不过单单这个陈述本身就已经领先别的任何人10年时间。” 这个定理,其后也被Gerard Washnitzer[Washnitzer]在1959年证明,不仅适用于复代 数簇——基域特征零的情况——而且也适用于任何本征光滑代数簇而不必在乎基域是什 么。赫兹布鲁克-黎曼-洛赫定理即作为特殊情况推出。1963年黎曼-洛赫定理一个影 响深远的推广出现了,它就是Michael Atiyah和Isadore Singer证明的Atiyah-Singe r指标定理。在证明的过程中,格洛腾迪克引入了现在叫作格洛腾迪克群的概念,这些 群本质上提供了一类新型拓扑不变量。格洛腾迪克自己将它们叫做K-群,他们提供了 由Atiyah和Hirzebruch所发展的拓扑K理论的起点。拓扑K理论接着又提供了代数K理论 的源动力,这两个领域从此均是研究很活跃的领域。 Arbeitstagung,字面意思即是“工作会议”,是由赫兹布鲁克在波恩大学所发起的, 其作为数学前沿研究的论坛已经有四十多年历史了。正是在1957年7月首次Arbeitstag ung上格洛腾迪克讲述了他在黎曼-洛赫问题上的工作。不过令人好奇的是,这个结果 从没有在他名字下发表;它出现在波莱尔和塞尔的一篇文章[BS]上(这个证明作为一个 报告,后来也出现在SGA6中)。正当他在1957年秋访问IAS(高等研究院)的时候,塞 尔收到格洛腾迪克的一封信,里面包含了格洛腾迪克证明的概要([Corr]中日期为195 7年11月1日的信)。他和波莱尔组织了一个讨论班来试着理解这个定理。因为格洛腾迪 克正在忙很多别的事情,他建议他的同事们将讨论班记录下来发表。不过波莱尔推测可 能有别的原因让格洛腾迪克对将证明写下来不感兴趣。“格洛腾迪克主要的哲学思想是 数学应该被简化为一系列很小而又很自然的步骤,”波莱尔说,“只要你还不能这么做 ,就说明你还没有理解里面真正的含义…他的黎曼-洛赫证明使用了一个小窍门,une atuce。因此他不喜欢这个证明,所以也就不想发表它。正好他有别的很多事情要做, 他对将这个窍门写下来没有兴趣。” 这并不是格洛腾迪克最后一次革命化一个学科研究问题的观点。“这样的事情是一次又 一次不停地发生,他会去考虑有些别人已经花了很久时间、在某些情况下甚至是100年 的时间研究过的问题… 最后他完全转变了人们当初认定的这个学科告诉我们的东西。 ”卡兹评论道。格洛腾迪克不仅会去解决很困难的问题,他还会去继续研究引起这些问 题的问题。 新世界大门开启 (我最后终于)意识到这种“我们,伟大而高贵的精神”思维方式,在一种特别极端和 恶意的形式下,从我母亲的孩提时代开始,就让她情绪易于激动,并支配着她和别人的 关系,让她总是居高临下,带着常常是倨傲甚至于轻蔑的怜悯来看待别人。 《收获与播种》,第30页 根据Honig的说法,格洛腾迪克的母亲在他呆在巴西的时候,至少有部分时间也在那里 ,尽管Honig说自己从没有见过她。我们不清楚她是否跟随儿子去了堪萨斯。当1956年 格洛腾迪克回到法国的时候,他们可能就没有住在一起了。在1957年11月于巴黎写给塞 尔的信中,格洛腾迪克询问塞尔他是否可以租下塞尔正要搬出的一间巴黎公寓。“我想 给我母亲租住这个公寓,她在Bois-Colombes过得不怎么好,而且觉得特别孤独,”格 洛腾迪克这样解释[Corr]。事实上,他母亲在这年底就去世了。 格洛腾迪克的朋友们和同事们都说当他谈及父母双亲的时候总是充满景仰,几乎到了吹 捧的地步。在《收获与缝补》一书中,格洛腾迪克也表达了对他们的深厚的孺慕之情。 多年里他在办公室里挂了张很醒目的他父亲的肖像,此画是Le Vernet集中营里的难友 描绘的。据Pierre Cartier的描述,这幅肖像画描绘了一个剃着光头、双目“炯炯有神 ”的男人[Cartier1];很多年里格洛腾迪克自己也剃光头。根据Ribenboin的话,汉卡 -格洛腾迪克对她的杰出儿子感到非常骄傲,反过来他也有一种对母亲特别深厚的依赖 。 她过世后,格洛腾迪克经历了一段时间来寻找自我,期间他停止了所有的数学活动,还 想过去成为一位作家。数月后,他决定重返数学,去完成和一些他已经开始发展的想法 相关联的工作。这一年是1958年,根据格洛腾迪克的话,这一年“可能是我数学生涯最 多产的一年。”(《收获与播种》,第24页)这个时候他开始和一位叫Mireille的妇女 同居,他将在数年后与她结婚,并育有三个孩子:乔安娜, 马修和亚历山大。Mireill e和格洛腾迪克的母亲曾经过往甚密,并且据熟悉他俩的人说,她比他大了不少。 得克萨斯大学奥斯汀分校的约翰-特德(John Tate)和他当时的妻子凯伦-特德(Kar en Tate)1957-1958学年在巴黎度过,在那儿他们首次见到格洛腾迪克。格洛腾迪克根 本就没有表现过那种他归因于母亲的倨傲。“他很友好,同时相当天真和孩子气,”J ohn Tate回忆道,“很多数学家都相当孩子气,有时不通世务,不过格洛腾迪克犹有甚 之。他看上去就那么无辜——不工于心计,不伪装自己,也不惺惺作态。他想问题的时 候相当清晰,解释问题的时候非常有耐心,没有自觉比别人高明的意思。他没有被任何 文明、权力或者高人一等的作风所污染。”Karin Tate回忆说格洛腾迪克乐于享受快乐 ,他很有魅力,并喜欢开怀大笑。但他也可以变得很极端,用非黑即白的眼光来看待问 题,容不得半点灰色地带。另外他很诚实:“你和他在一起的时候总知道他要说的是什 么,”她说,“他不假装任何事情。他总是很直接。”她和她的弟弟,麻省理工学院的 迈克尔-阿廷(Michael Artin)都觉察到格洛腾迪克的个性和他们的父亲埃米尔-阿 廷(Emil Artin)很相似。 格洛腾迪克有着“令人难以置信的理想主义想法”,Karin Tate回忆说。比如说,他不 允许在他屋子里有地毯,因为他坚信地毯只是装饰用的奢侈品罢了。她还记得他穿着轮 胎做的凉鞋。“他认为这妙极了,”她说,“这些都是他所尊敬的事务的象征——人需 要量体裁衣,量力而行。”在他的理想主义原则下,有时候他可能变得特别不合世宜。 在格洛腾迪克和Mireille1958年首次访问哈佛之前,他给了Mireille一本他喜欢的小说 让她来提高她相当贫乏的英语水平。这本小说就是Moby Dick。 新几何的诞生 按照三十年后的后见之明,现在我可以说就是在1958年,伴随着两件主要工具,概型( scheme,它代表旧概念“代数簇”的一个变形)和拓扑斯(toposes,它代表空间概念 的变体,尽管更加复杂)的苏醒,新几何的观点真正诞生了。 《收获与播种》,第23页 1958年8月,格洛腾迪克在爱丁堡举行的国际数学家大会上作了一个大会报告[Edin]。 这个报告用一种非凡的先见之明,简要描述了许多他将在未来12年里工作的主题。很清 楚这个时候他的目标就是要证明Andre Weil的著名猜想,其揭示了代数簇构成的离散世 界和拓扑形成的连续世界的丰富联系。 在这个时候,代数几何的发展非常迅猛,很多未知问题并不需要很多背景知识。起初的 时候这个学科主要是研究复数域上的簇。在20世纪初叶,这个领域是意大利数学家,诸 如Guido Casternuovo,Federigo Enriques和Francesco Severi等的专长。尽管他们发 展了很多的独创思想,但他们的结果不都是通过严格证明得来的。在1930和1940年代, 其他一些数学家,包括范德瓦尔登、安德烈-韦依和奥斯卡-察里斯基,打算研究任意 数域上的簇,特别是特征p域上的簇,其在数论上很重要。但是,由于意大利代数几何 学派严谨性的匮乏,有必要在此领域建筑新的基础。这就是韦依在他1946年出版的《代 数几何基础》中所做的事情(Foundations of Algebraic Geometry, [Weil1])。 韦依的猜想出现在他1949年的文章[Weil2]中。由数论中某些问题的启发,韦依研究了 一类其一些特殊情况是由Emil Artin引进的zeta函数;它被叫做zeta函数则是因为它是 通过和黎曼zeta函数作类比定义得来的。给定定义于特征p的有限域上的一个代数簇V, 则可以计算V上在此域上有理点的个数,以及在其每个有限扩域上有理点的个数。将这 些数放入一个生产函数中,就得到V的zeta函数。韦依证明了在曲线和Abel簇两种情况 下,zeta函数满足三条性质:它是一个有理函数;它满足函数方程;它的零点和极点有 某种特定的形式。这种(特定的)形式,经过换元后,恰好和黎曼假设相对应。韦依更 进一步观察到,如果V是由某个特征零簇W模p得到的,那么当V的zeta函数表示为有理函 数时,W的Betti数就可以从V的zeta函数上读出。韦依猜想就是问,如果在射影非奇异 代数簇上定义这样的zeta函数,是否同样的性质还是正确的。特别地,象Betti数这样 的拓扑量是否会在zeta函数里面出现?这种猜想中的代数几何和拓扑的联系,暗示当时 的一些新工具,比如说为研究拓扑空间而发展出来的上同调理论,可能适用于代数簇。 由于和经典黎曼假设的类似,韦依猜想的第三条有时也叫作“同余黎曼假设”;这个猜 想后来被证实是三个中最难证明的。 “韦依猜想一经问世,很显然它们会由于某种原因而将扮演一个中心角色,”Katz说道 ,“这不仅因为它们就是作为‘黑盒子’式的论断也是令人惊异的,而且因为看上去很 清楚要解决它们将需要发展很多不可思议的新工具,这些工具它们自身将由于某种原因 具有不可思议的价值——这些后来都被证明是完全正确的。”高等研究院的皮埃尔-德 林(Pierre Deligne)说(韦依猜想)吸引格洛腾迪克的地方正是代数几何和拓扑的猜 测联系。他喜欢这种“将韦依的这个梦想变成强大的机器”的想法,Deligne评论道。 格洛腾迪克不是由于韦依猜想很有名、或者由于别人认为它们很难而对韦依猜想感兴趣 的。事实上,他并不是靠对困难问题的挑战来推动自己。他感兴趣的问题,是那些看上 去会指向更大而又隐藏着的结构。“他目标在于发现和创造问题的自然栖息之家,”D eligne注意到,“这个部分是他感兴趣的,尤甚于解决问题。”这种方式和同时代另外 一位伟大数学家约翰-纳什(John Nash)的方式形成鲜明对照。在他的数学黄金时代 ,Nash喜欢找那些被他同事们认为是最重要、最有挑战性的问题来做。“Nash象一个奥 运会的运动员,”密歇根大学的Hyman Bass评论道。“他对众多的个人挑战感兴趣。” 如果Nash不算是一个善于解决问题的理想范例,格洛腾迪克绝对算是建构理论的完美范 例。Bass说,格洛腾迪克“有一种关于数学可能是什么的高屋建瓴般的观点。” 1958年秋,格洛腾迪克开始了他到哈佛大学数学系的多次访问的第一次。Tate其时正是 那里的教授,而系主任是奥斯卡-察里斯基。那时候格洛腾迪克已经用新发展的上同调 的方法,重新证明了连通性定理,Zariski最重要的成果之一,于1940年代首次被其证 明。根据当时是Zariski学生,现在布朗大学的大卫-曼福德(David Mumford)的话, Zariski自己从没有学会这些新方法,但是他明白它们的能力,希望他的学生们受到新 方法的熏陶,因此他邀请格洛腾迪克来访问哈佛。 Mumford注意到察里斯基和格洛腾迪克他们相处得很好,尽管作为数学家他们是完全不 同的。据说察里斯基如果被一个问题难住的时候,就会跑到黑板前,画一条自相交曲线 ,这样可以帮助他将各种想法条理化。“谣传他会将这画在黑板的一个角落里,然后他 会擦掉它,继续做代数运算。”Mumford解释说,“他必须通过创造一个几何图像、重 新建构从几何到代数的联系来使自己思维清晰。”根据曼福德的话,这种事格洛腾迪克 是绝对不会做的;他似乎从不从例子开始研究,除那些特别简单、几乎是平凡的例子外 。除去交换图表外,他也几乎不画图。 当格洛腾迪克首次应邀到哈佛的时候,他和察里斯基在访问前通过几次信,曼福德回忆 道。这时离众议院非美活动委员会的时代不久,得到签证的一个要求是访问者宣誓自己 不会从事推翻美国政府的活动。格洛腾迪克告诉察里斯基他拒绝做这样的宣誓。当被告 知他可能会因此进监狱时,格洛腾迪克说进监狱可以接受,只要学生们可以来探访他而 且他有足够多的书可用。 在格洛腾迪克哈佛的讲座上,曼福德发现到抽象化的跃进相当惊险。有一次他询问格洛 腾迪克某个引理如何证明,结果得到一个高度抽象的论证作为回复。曼福德开始时不相 信如此抽象的论证能够证明如此具体的引理。“于是我走开了,将它想了好几天,结果 我意识到它是完全正确的。”曼福德回忆道,“他比我见到的任何人都更具有这种能力 ,去完成一个绝对令人吃惊的飞跃到某个在度上更抽象的东西上去…他一直都在寻找某 种方法来叙述一个问题,看上去很明显地将所有的东西都从问题里抛开,这样你会认为 里面什么都没有了。然而还有些东西留了下来,而他能够在这看上去的真空里发现真正 的结构。” 英雄岁月 在IHES(高等科学研究所)的英雄岁月里,Dieudonne和我是所里仅有的成员,也是仅 有的可以给它带来信誉和科学世界听众的人… 我觉得自己和Dieudonne一起,有点象是 我任职的这个研究所的“科学”共同创始人,而且我期望在那里结束我的岁月!我最终 强烈地认同IHES… 《收获与播种》,第169页 1958年6月,在巴黎索邦举行的发起人会议上,高等科学研究所(Institut des Haute s Scientifiques, IHES)正式成立。IHES的创始人Leon Motchane,一位具有物理博士 学位的商人,设想在法国成立一个和普林斯顿的高等研究院类似的独立的研究型学院。 IHES的最初计划是集中做三个领域的基础研究:数学,理论物理和人类科学方法论。尽 管第三个领域从来没有在那立足过,在10年时间里,IHES已经建设成为世界上最顶尖的 数学和理论物理中心之一,拥有一群为数不多但素质一流的成员和一个很活跃的访问学 者计划。 根据科学史家David Aubin的博士论文[Aubin],就是在1958年爱丁堡数学家大会或者可 能更前的时候,Motchane说服Dieudonne和格洛腾迪克接受新设立的IHES的教授职位。 Cartier在[Cartier2]中说Motchane起初希望聘用Dieudonne,而Dieudonne则将格洛腾 迪克的聘请作为他接受聘请的一个条件。因为IHES从一开始就是独立于国家的,聘请格 洛腾迪克不是一个问题,尽管他是无国籍人。两位教授在1959年3月正式上任,格洛腾 迪克在同年5月开始他的代数几何讨论班。Rene Thom,1958年大会菲尔兹奖章获得者, 在1963年10月加入,而IHES的理论物理部随着1962年Louis Michel和1964年David Rue lle的任命开始进行活动。就这样到1960年代中期,Motchane就已经为他的新研究所招 募了一群杰出的研究人员。 到1962年的时候,IHES还没有永久的活动场所。办公场所是从Thiers基金会租用的,讨 论班也在那里或巴黎的大学里举行。Aubin报道说一位叫Arthur Wightman的IHES早期访 问学者就被希望在他的旅馆房间里工作。据说,当一位访问学者告之图书馆资料不足的 时候,格洛腾迪克回答说:“我们不读书的,我们是写书的!”的确在最初几年里,研 究所的很多活动是围绕“Publications Mathematiques de l’IHES”进行的,它的起 初几卷包括奠基性著作Elements de Geometrie Algebrique,其以起首字面缩写EGA而 闻名于世。事实上EGA的撰写在Dieudonne和格洛腾迪克正式于IHES上任前半年就已经开 始了;[Corr]里提及最初写作的日期是1958年的秋天。 EGA的著述者通常认为是格洛腾迪克,“与Jean Dieudonne的合作”。格洛腾迪克将笔 记和草稿写好,这些然后由Dieudonne充实和完善。根据Armand Borel的解释,格洛腾 迪克是把握EGA全局的人,而Dieudonne只是对此有逐行的理解。“Dieudonne将它写得 相当繁琐,”Borel评论说。同时,“Dieudonne当然又有令人难以置信的高效。没有别 的人可以将它写好而不严重影响自己的工作。”对于当时那些想进入这个领域的人来说 ,从EGA中学习是一件令人望而生畏的挑战。目前它很少作为这个领域的入门书,因为 有其他许多更容易入门的教材可供选择。不过那些教材并没有做EGA打算做的事,也就 是完全而系统地解释清楚研究概型所需要的一些工具。现在在波恩的马克斯-普朗克数 学研究所的Gerd Faltings,当他在普林斯顿大学的时候,就鼓励自己的博士研究生去 学EGA。对很多数学家而言,EGA仍然是一本有用而全面的参考书。IHES的现任所长Jea n-Pierre Bourguignon说每年研究所仍然要卖掉超过100本的EGA。 格洛腾迪克计划中EGA要包括的东西十分多。在1959年8月给塞尔的信中,他给了个简要 的大纲,其中包括基本群,范畴论,留数,对偶,相交数,Weil上同调,加上“如果上 帝愿意,一点同伦论”。“除非有不可预知的困难或者我掉入泥沼里去了,这个multi plodocus应该在三年内或最多四年内完成,”格洛腾迪克很乐观地说,此处他应用了他 和塞尔的玩笑用语multiplodocus,其意是指一篇很长的文章。“我们接下去就可以开 始做代数几何了!”格洛腾迪克欢呼道。后来的情况表明,EGA在经过近乎指数式增长 后失去了动力:第一章和第二章每章一卷,第三章两卷,而最后一章第四章则达到了四 卷。它们一共有1800多页。尽管EGA没有达到格洛腾迪克计划的要求,它仍然是一项里 程碑式的著作。 EGA这个标题仿效Nicolas Bourbaki的《数学原理》系列的标题不是偶然的,正如后者 仿效欧几里得的《几何原本》也不偶然一样。格洛腾迪克从1950年代后期开始,数年内 曾经是布尔巴基学派的成员,而且他和学派内很多成员关系密切。布尔巴基是一群数学 家的笔名,其大多数是法国人,他们在一起合作撰写数学方面一系列基础性的著作。D ieudonne和Henri Cartan, Claude Chevalley, Jean Delsarte, Andre Weil一起,是 布尔巴基学派的创始成员。一般情况下学派有10名成员,其组成随着岁月而演化。布尔 巴基最早的书出版于1939年,而它的影响在1950年代和1960年代达到了顶峰。这些书籍 的目的是对数学的中心领域提供公理化的处理,使其一般性程度足以对最大数目的数学 家有用处。这些著作都是经过成员间激烈甚至火爆的辩论的严格考验才诞生的,而这些 成员中的许多都有很强的人格和非常个性化的观点。曾是布尔巴基成员25年的波莱尔写 道这个合作可能是“数学史上的独特事件”[Borel]。布尔巴基汇聚了当时许多的顶尖 数学家的努力,他们无私的匿名奉献自己的大量时间和精力来撰写教材,使得这个领域 的一大部分容易让大家理解。这些教材有很大的影响,到1970和1980年代,有人埋怨布 尔巴基的影响太大了。还有人也批评这些书的形式过于抽象和一般化。 布尔巴基和格洛腾迪克的工作有一些相似之处,此表现在抽象化和一般化的程度上,也 表现在其目的都是基本、细致而有系统。他们间的主要区别是布尔巴基包括了数学研究 的一系列领域,而格洛腾迪克主要关注在代数几何上发展新的思想,以韦依猜想作为其 主要的目标。格洛腾迪克的工作差不多集中在他自己的内在观点上,而布尔巴基则是铸 造他的成员们的不同观点的结合的合作努力。 波莱尔在[Borel]中描述了1957年3月布尔巴基的聚会,他称之为“顽固的函子大会”, 因为格洛腾迪克提议一篇关于范畴论的Bourbaki草稿应该从一个更范畴论的观点来重写 。布尔巴基没有采用这个想法,认为这将导致无穷无尽的基础建设的循环往复。格洛腾 迪克“不能够真正和布尔巴基合作,因为他有他自己的庞大机器,而布尔巴基对他而言 ,还不够一般化,”塞尔回忆说。另外,塞尔评论道:“我认为他不是很喜欢布尔巴基 这样的体系,在此我们可以真正详细讨论草稿并且批评它们…这不是他做数学的方式。 他想自己单干。”格洛腾迪克在1960年离开布尔巴基,尽管他继续和其中很多成员关系 密切。 有些故事传说格洛腾迪克离开布尔巴基是因为他和韦依的冲突,实际上他们在布尔巴基 时间上仅仅有很短的重合:根据惯例,成员必须在50岁的时候退休,所以韦依在1956年 离开了学派。然而,格洛腾迪克和韦依作为数学家很不一样倒的确是事实。根据Delig ne的说法:“韦依不知为何觉得格洛腾迪克对意大利几何学家们的工作和对经典文献阐 明的结果太无知了,而且韦依不喜欢这种建造巨大机器的工作方式…他们的风格相当不 一样。 除去EGA以外,格洛腾迪克代数几何全集的另外一个主要部分是Seminaire de Geometr ie Algebrique du Bois Marie,简称SGA,其中包括他的IHES讨论班的演讲的讲义。它 们最初由IHES分发。SGA2由North Holland和Masson合作出版的,而其他几卷则是由Sp ringer-Verlag出版。SGA1整理自1960-1961年讨论班,而这个系列最后的SGA7则来自 1967-1969年的讨论班。与目的是为了奠基的EGA不一样,SGA描述的是出现在格洛腾迪 克讨论班上的正在进行的研究。他也在巴黎布尔巴基讨论班上介绍了很多结果,它们被 合集为FGA,即Fondements de la Geometrie Algebrique,其出版于1962年。EGA,SGA 和FGA加起来大约有7500页。 魔术扇子 如果说数学里有什么东西让我比对别的东西更着迷的话(毫无疑问,总有些让我着迷的 ),它既不是“数”也不是“大小”,而是型。在一千零一张通过其型来展示给我的面 孔中,让我比其他更着迷的而且会继续让我着迷下去的,就是那隐藏在数学对象下的结 构。 《收获与播种》,第27页 在《收获与播种》第一卷里,格洛腾迪克对他的工作作了一个解释性的概括,意在让非 数学家能够理解(第25-48页)。在那儿他写道,从最根本上来讲,他的工作是寻找两 个世界的统一:“算术世界,其中(所谓的)‘空间’没有连续性的概念,和连续物体 的世界,其中的‘空间’在恰当的条件下,可以用分析学家的方法来理解”。韦依猜想 如此让人渴望正是因为它们提供了此种统一的线索。胜于直接尝试解决韦依猜想,格洛 腾迪克大大地推广了它们的整个内涵。这样做可以让他感知更大的结构,这些猜想所凭 依于此结构,却只能给它提供惊鸿一瞥。在《收获与播种》这一节里,格洛腾迪克解释 了他工作中一些主要思想,包括概型、层和拓扑斯。 基本上说,概型是代数簇概念的一个推广。给定一组素特征有限域,一个概型就可以产 生一组代数簇,而每一个都有它自己与众不同的几何结构。“这些具有不同特征的不同 代数簇构成的组可以想象为一个‘由代数簇组成的无限扇面的扇子’(每个特征构成一 个扇面),”格洛腾迪克写道.“‘概型’就是这样的魔术扇子,就孺扇子连接很多不 同的‘分支’一样,它连接着所有可能特征的‘化身’或‘转世’。”到概型的推广则 可以让大家在一个统一方法下,研究一个代数簇所有的不同“化身”。在格洛腾迪克之 前,“我认为大家都不真正相信能够这样做,”迈克-阿廷评论说,“这太激进了。没 有人有勇气哪怕去想象这个方法可能行,甚至可能在完全一般的情况下都行。这个想法 真的太出色了。” 从19世纪意大利数学家Enrico Betti的远见开始,同调和它的对偶上同调那时候已经发 展成为研究拓扑空间的工具。基本上说,上同调理论提供一些不变量,这些不变量可以 认为是衡量空间的这个或那个方面的‘准尺’。由韦依猜想隐含着的洞察力所激发的巨 大期望就是拓扑空间的上同调方法可以适用于簇与概型。这个期望在很大程度上由格洛 腾迪克及其合作者的工作实现了。“就象夜以继日一样将这些上同调技巧带到代数几何 中”,曼福德注意到。“它完全颠覆了这个领域。这就象傅立叶分析之前和之后的分析 学。你一旦知道傅立叶分析的技巧,突然间你看一个函数的时候就有了完全深厚的洞察 力。这和上同调很类似。” 层的概念是由让-勒雷所构想而后由亨利-嘉当和让-皮埃尔-塞尔进一步发展的。在 他的奠基性文章FAC(“Faisceaux algebriques coherents”,“代数凝聚层”,[FAC ])中,塞尔论证了如何将层应用到代数几何中去。格洛腾迪克在《收获与播种》中描 述了这个概念如何改变了数学的全貌:当层的想法提出来后,就好象原来的五好标准上 同调“准尺”突然间繁殖成为一组无穷多个新“准尺”,它们拥有各种各样的大小和形 状,每一个都完美地适合它自己独特的衡量任务。更进一步说,一个空间所有层构成的 范畴包含了如此多的信息,本质上人们可以“忘记”这个空间本身。所有这些的信息都 包括在层里面——格洛腾迪克称此为“沉默而可靠的向导”,引领他走向发现之路。 拓扑斯的概念,如格洛腾迪克所写,是“空间概念的变体”。层的概念提供了一种办法 ,将空间所依附的拓扑设置,转化为层范畴所依附的范畴设置。拓扑斯则可以描述为这 样一个范畴,它尽管无需起因于普通空间,然而却具有所有层范畴的“好”的性质。拓 扑斯的概念,格洛腾迪克写道,突出了这样的事实:“对于一个拓扑空间而言真正重要 的根本不是它的‘点’或者点构成的子集和它们的亲近关系等等,而是空间上的层和层 构成的范畴”。 为了提出拓扑斯的概念,格洛腾迪克“很深入地思考了空间的概念”,Deligne评价道 。“他为理解韦依猜想所创立的理论首先是创立拓扑斯的概念,将空间概念推广,然后 定义适用于这个问题的拓扑斯,”他解释说。格洛腾迪克也证实了“你可以真正在其上 面工作,我们关于普通空间的直觉在拓扑斯上仍然适用…这是一个很深刻的想法。” 在《收获与播种》中格洛腾迪克评论道,从技术观点而言,他在数学上的大多工作集中 在发展所缺乏的上同调理论。平展上同调(Etale cohomology)就是这样一种理论,由 格洛腾迪克、迈克-阿廷以及其他一些人所发展,其明确意图是应用于韦依猜想,而它 确实是最终证明的主要因素之一。但是格洛腾迪克走得更远,发展了motive的概念,他 将此描述为“终极上同调不变量”,所有其他的上同调理论都是它的实现或者化身。M otive的完整理论至今还没有发展起来,不过由它产生了大量好的数学。比如,在1970 年代,高等研究院的Deligne和Robert Langlands猜想了motives和自守表示间的精确关 系。这个猜想,现在是所谓Langlands纲领的一部分,首次以印刷形式出现在[Langlan ds]一文中。多伦多大学的James Arthur认为彻底证明这个猜想将是数十年后的事情。 但他指出,Andrew Wiles的Fermat大定理的证明,本质上就是证明了这个猜想在椭圆曲 线所产生的2维motives的特殊情况。另外一个例子是高等研究院的Vladimir Voevodsk y在motivic上同调的工作,由此他获得2002年菲尔兹奖章。这个工作发展了格洛腾迪克 关于motive的一些原始想法。 在此关于他数学工作的简短回顾中,格洛腾迪克写道,构成它的精华和力量的,不是大 的定理,而是“想法,甚至梦想”(第51页)。 格洛腾迪克学派 直到1970年第一次“苏醒”的时候,我和我的学生们的关系,就如我和自己工作的关系 一样,是我感到满意和快乐-这些是我生活的和谐感知的切实而无可指责的基础之一- 的一个源泉,至今仍有它的意义… 《收获与播种》,第63页 在1961年秋访问哈佛时,格洛腾迪克致信给塞尔:“哈佛的数学气氛真是棒极了,和巴 黎相比是一股真正的清新空气,而巴黎的情况则是一年年里越来越糟糕。这里有一大群 学生开始熟悉概型的语言,他们别无所求,只想做些有趣的问题,我们显然是不缺有趣 的问题的”[Corr]。迈克-阿廷,其于1960年在察里斯基指导下完成论文,此时正是哈 佛的Benjamin Pierce讲师。完成论文之后,阿廷马上开始学习新的概型语言,他也对 平展上同调的概念感兴趣。当格洛腾迪克1961年来哈佛的时候,“我询问他平展上同调 的定义,”阿廷笑着回忆说。这个定义当时还没有明确给出来。阿廷说道:“实际上整 个秋天我们都在辩论这个定义。” 1962年搬到麻省理工学院后,阿廷开了个关于平展上同调的讨论班。接下去两年大部分 时间他在IHES度过,和格洛腾迪克一起工作。平展上同调的定义完成后,仍然还有许多 工作要做来驯服这个理论,让它变成一个可以真正使用的工具。“这个定义看上去很美 ,不过它不保证什么东西是有限的,也不保证可计算,甚至不保证任何东西,”曼福德 评论道。这些就是阿廷和格洛腾迪克要投入的工作;其中一个结果就是阿廷可表定理。 与让-路易-沃迪耶尔(Jean-Louis Verdier)一起,他们主持了1963-1964年的讨论 班,其主题即平展上同调。这个讨论班写成为SGA4的三卷书,一共差不多1600页。 可能有人不同意格洛腾迪克对1960年代早期巴黎数学氛围“糟糕”的评价,但毫无疑问 ,当他在1961年回到IHES,重新开始他的讨论班时,巴黎的数学氛围得到了相当大的加 强。那里的气氛“相当棒”,阿廷回忆说。这个讨论班参加者人数众多,包括巴黎数学 界的头面人物以及世界各地来访的数学家。一群出色而好学的学生围绕在格洛腾迪克周 围,在他的指导下写论文(由于IHES不授予学位,名义上说他们是巴黎市内外一些大学 的学生)。1962年,IHES搬到它的永久之家,位于巴黎郊区Bures-sur-Yvette一个叫B ois-Marie,宁静而树木丛生的公园里。那个举行讨论班的舞台式建筑,及其大绘图窗 户和所赋予的开放而通透的感觉,给这里提供了一种不凡而生动的背景。格洛腾迪克是 所有活动的激情四射的中心。“这些讨论班是非常交互式的,”Hyman Bass回忆说,他 于1960年代访问过IHES,“不过不管格洛腾迪克是不是发言人,他都占着统治地位。” 他特别严格而且可能对人比较苛求。“他不是不善心,但他也不溺爱学生。”Bass说道 。 格洛腾迪克发展了一套与学生工作的固定模式。一个典型例子是巴黎南大学的Luc Ill usie(老耶律),他于1964年成为格洛腾迪克的学生。老耶律曾参加了巴黎的亨利-嘉 当和洛朗-施瓦兹讨论班,正是嘉当建议老耶律或许可以跟随格洛腾迪克做论文。老耶 律其时还只学习过拓扑,很害怕去见这位代数几何之“神”。后来表明,见面的时候格 洛腾迪克相当友善,他让老耶律解释自己已经做过的事情。老耶律说了一小段时间后, 格洛腾迪克走到黑板前,开始讨论起层、有限性条件、伪凝聚层和其他类似的东西。“ 黑板上的数学就象海一样,象那奔流的溪流一样,”老耶律回忆道。最后,格洛腾迪克 说下一年他打算将讨论班主题定为L-函数和l-adic上同调,老耶律可以帮助记录笔记。 当老耶律抗议说他根本不懂代数几何时,格洛腾迪克说没关系:“你很快会学会的。” 老耶律的确学会了。“他讲课非常清楚,而且他花大力气去回顾那些必需的知识,包括 所有的预备知识,”老耶律评价道。格洛腾迪克是位优秀的老师,非常有耐心而且擅于 清楚解释问题。“他会花时间去解释非常简单的例子,来证明这个机器的确可以运行, ”老耶律说。格洛腾迪克会讨论一些形式化的性质,那些常常被人归结到“平凡情况” 因而太明显而不需要讨论的性质。通常“你不会去详述它,你不会在它上面花时间,” 老耶律说,但这些东西对于教学非常有用。“有时有点冗长,但是它对理解问题很有帮 助。” 格洛腾迪克给老耶律的任务是记录讨论班一些报告的笔记——准确说,是SGA5的报告I ,II和III。笔记完成后,“当我将它们交给他时全身都在发抖,”老耶律回忆道。几个 星期后格洛腾迪克告诉老耶律到他家去讨论笔记;他常常与同事和学生在家工作。格洛 腾迪克将笔记拿出来放在桌子上后,老耶律看到笔记上涂满了铅笔写的评语。两个人会 坐在那里好几个小时来让格洛腾迪克解释每一句评语。“他可能评论一个逗号、一个句 号的用法,可能评论一个声调的用法,也可能深刻评论关于一个命题的实质并提出另一 种组织方法——各种各样的评论都有,”老耶律说道,“但是他的评语都说到点子上。 ”这样逐行对笔记做评论是格洛腾迪克指导学生很典型的方法。老耶律回忆起有几个学 生因为不能忍受这样近距离的批评,最终在别人指导下写了论文。有个学生一次见过格 洛腾迪克后差点流眼泪了。老耶律说:“我记得有些人很不喜欢这样的方式。你必须照 这样做…但这些批评不是吹毛求疵。” Nicholas Katz在他以博士后身份于1968年访问IHES时也被给了个任务。格洛腾迪克建 议Katz可以在讨论班上做个关于Lefschetz pencils的报告。“我曾听说过Lefschetz pencils,但除去听说过它们之外我对它们几乎一无所知,”Katz回忆说。“但到年底 的时候我已经在讨论班上做过几次报告了,现在这些作为SGA7的一部分留传了下来。我 从这里学到了相当多的东西,这对我的未来起了很多影响。”Katz说格洛腾迪克一周内 可能会去IHES一次去和访问学者谈话。“绝对令人惊讶的是他不知怎么可以让他们对某 些事情感兴趣,给他们一些事情做,”Katz解释说,“而且,在我看来,他有那种令人 惊讶的洞察力知道对某个人而言什么问题是个好问题,可以让他去考虑。在数学上,他 有种很难言传的非凡魅力,以至于大家觉得几乎是一项荣幸被请求在格洛腾迪克对未来 的远见卓识架构里做些事情。 哈佛大学的Barry Mazur至今仍然记得在1960年代早期在IHES和格洛腾迪克最初一次谈 话中,格洛腾迪克给他提出的问题,那个问题起初是Gerard Washnitzer问格洛腾迪克 的。问题是这样的:定义在一个域上的代数簇能否由此域到复数域的两个不同嵌入而得 到不同的拓扑微分流形?塞尔早前曾给了些例子说明两个拓扑流形可能不一样,受这个 问题的激发,Mazur后来和阿廷在同伦论上做了些工作。但在格洛腾迪克说起这个问题 的时候,Mazur还是个全心全意的微分拓扑学家,而这样的问题本来他是不会碰到的。 “对于格洛腾迪克,这是个很自然的问题,”Mazur说道,“但对我而言,这恰好是让 我开始从代数方面思考的动力。”格洛腾迪克有种真正的天赋来“给人们搭配未解决问 题。他会估量你的能力而提出一个问题给你,而它正是将为你照亮世界的东西。这是种 相当奇妙而罕见的感知模式。” 在和IHES的同事及学生工作外,格洛腾迪克和巴黎外一大群数学家保持着通信联系,其 中有些正在别的地方在部分他的纲领上进行工作。例如,加州大学伯克莱分校的Robin Hartshorne1961年的时候正在哈佛上学,从格洛腾迪克在那所做的讲座里,他得到关 于论文主题的想法,即研究希尔伯特概型。论文完成后Hartshorne给已经回到巴黎的格 洛腾迪克寄了一份。在日期署为1962年9月27日的回信中,格洛腾迪克对论文做了些简 短的正面评价。“接下去3到4页全是他对我可能可以发展的更深定理的想法和其他些关 于这个学科大家应该知道的东西,”Hartshorne说。他注意到信中建议的有些事情是“ 不可完成的困难”,而其他一些则显示了非凡的远见。倾泄这些想法后,格洛腾迪克又 回来谈及论文,给了3页详细的评语。 在他1958年爱丁堡数学家大会的报告中,格洛腾迪克已经概述了他关于对偶理论的想法 ,但由于他在IHES讨论班中正忙着别的一些主题,没有时间来讨论它。于是Hartshorn e提出自己在哈佛开一个关于对偶的讨论班并将笔记记录下来。1963年夏天,格洛腾迪 克给了Hartshorne大约250页的教案(prenote),这将成为Hartshorne这年秋天开始的 讨论班的基础。听众提出的问题帮助Hartshorne发展和提炼了对偶理论,他并开始将它 系统记录下来。他会将每一章都寄给格洛腾迪克来接受批评,“它回来的时候整个都布 满了红墨水,”Hartshorne回忆道,“于是我将他说的都改正了并即给他寄新的版本。 它被寄回时上面的红墨水更多。”意识到这可能是个无穷尽的过程后,Hartshorne有天 决定将手稿拿去出版;此书1966年出现在Springer的Lecture Notes系列里[Hartshorn e]。 格洛腾迪克“有如此多的想法以至基本上他一个人让那时候世界上所有在代数几何上认 真工作的人都很忙碌,”Hartshorne注意到。他是如何让这个事业一直运行下来的呢? “我认为这没有什么简单答案,”迈克-阿廷回答说。不过显然格洛腾迪克的充沛精力 和知识宽度是一些原因。“他非常的精力充沛,而且他涵盖很多领域,”阿廷说。“他 能够完全控制这个领域达12年之久真是太不寻常了,这可不是个懒人集中营。” 在他IHES的岁月里,格洛腾迪克对数学的奉献是完全的。他的非凡精力和工作能力,以 及对自身观点的顽强坚持,产生了思维的巨浪,将很多人冲入它的奔涌激流中。他没有 在自己所设的令人畏惧的计划面前退缩,反而勇往直前地投入进去,冲向大大小小的目 标。“他的数学议程比起一个人能做的要多出很多,”Bass评价道。他将其中很多工作 发包给他的学生们和合作者们来做,而自己也做了很大一部分的工作。给予他动力的, 如他在《收获与播种》里所解释,就只是理解事情的渴望,而确实,那些知道他的人证 明他不是由于什么形式的竞赛来推动自己的。“在那时,从没有过这样要在别人之前证 明某个东西的想法,”塞尔解释道。而且在任何时候,“他不会和别的任何人竞赛,一 个原因是他希望按他自己的方式来做事情,而几乎没有别的人愿意也这样做。完成它需 要太多工作了。” 格洛腾迪克学派的统治地位有些有害的效果。甚至格洛腾迪克IHES的杰出同事,Rene Thom也感到有压力。在[Fields]中,Thom写道与其他同事的关系比较起来,他与格洛腾 迪克的关系“不那么愉快”。“他的技术优势太有决定性了,”Thom写道。“他的讨论 班吸引了整个巴黎数学界,而我则没有什么新的东西可供给大家。这促使我离开了严肃 数学世界而去处理更一般的概念,比如组织形态的发生,这个学科让我更感兴趣,引导 我走向一个很一般形式的‘哲学’生物学。” 在他1988年的教材《本科生代数几何》最后的历史性评论中,Miles Reid写道:“对格 洛腾迪克的个人崇拜有些严重的副作用:许多曾经花了一生很大一部分时间去掌握韦依 的代数几何基础的人觉得受到了拒绝和羞辱…整整一代学生(主要是法国人)被洗脑而 愚蠢地认为如果一个问题不能放置于高效能的抽象框架里就不值得去研究。”如此“洗 脑”可能是时代时尚无法避免的副产品,尽管格洛腾迪克自己从来不是为抽象化而追求 抽象化的。Reid也注意到,除去少数可以“跟上步伐并生存下来”的格洛腾迪克的学生 ,从他的思想里得益最多的是那些在一段距离外受影响的人,特别是美国,日本和俄国 的数学家。Pierre Cartier在俄国数学家,如Vladimir Drinfeld,Maxim Kontsevich ,Yuri Manin和Vladimir Voevodsky的工作中看到了格洛腾迪克思想的传承。Cartier 说:“他们抓住了格洛腾迪克的真正精神,但他们能够将它和其他东西结合起来。” 一种不同的思考方式 对发现工作而言,特别的关注和激情四射的热情是一种本质的力量,就如同阳光的温暖对 于埋藏在富饶土壤里的种子的蛰伏成长和它们在阳光下柔顺而不可思议的绽放所起的作 用一样。 《收获与播种》,第49页 格洛腾迪克有他自己一套研究数学的方式。正如麻省理工学院的Michael Artin所言, 在1950年代晚期和1960年代“数学世界需要适应他,适应他抽象化思维的力量”。现在 格洛腾迪克的观点已经如此深入地被吸收到代数几何里面,以至于对现在开始这个领域 研究的研究生而言它是再正常不过的了,他们中很多人没有意识到以前的情形是相当不 一样的。普林斯顿大学的Nicholas Katz说在他作为一个年青数学家首次接触到格洛腾 迪克思考问题的方式时,这种方式在他看来是与以前完全不同的全新的方式。如Katz所 指出,这种观念的转换是如此的根本和卓有成效,而且一旦得到采用后是如此完全的自 然以至于“很难想象在你这样考虑问题之前的时代是什么样子的”。 尽管格洛腾迪克从一个非常一般化的观点来研究问题,他并不是为了一般化而这样做的 ,而是因为他可以采用一般化观点而成果丰硕。“这种研究方式在那些天赋稍缺的人手 里只会导致大多少人所谓的毫无意义的一般化,”Katz评价说,“而他不知何故却知道 应该去思考哪样的一般问题。”格洛腾迪克一直是寻找最恰好的一般情形,它正好能够 提供正确的杠杆作用来领悟问题。“一次接一次地,他看上去就有一个诀窍,(在研究 问题时)去掉恰当多的东西,而留存下来的不是特殊情况,也不是真空,”得克萨斯大 学奥斯汀分校的John Tate评论道,“它如同行云流水,不带累赘。它就是恰如其分的 好。” 格洛腾迪克思考问题模式的一个很显著的特征是他好像几乎从不依赖例子。这个可以从 所谓的“格洛腾迪克素数”的传说中看出。在一次数学讨论中,有人建议格洛腾迪克他 们应该考虑一个特殊素数。“你是说一个具体的数?”格洛腾迪克问道。那人回答说是 的,一个具体的素数。格洛腾迪克建议道:“行。就选57。” 那格洛腾迪克一定知道57不是一个素数,对吧?完全错了,布朗大学的David Mumford 说道。“他不从具体例子来思考问题。”与他对照的是印度数学家Ramanujan,他对很 多数的性质非常熟悉,其中有些相当巨大。那种类型的思考方式代表了和格洛腾迪克的 方式正相对应的数学世界。“他真的从没有在特例里下功夫,”Mumford观察到,“我 只能从例子中来理解事情,然后逐渐让它们更抽象些。我不认为这样先看一个例子对格 洛腾迪克有一丁点帮助。他真的是从绝对最大限度的抽象方式中思考问题来掌握局势的 。这是很奇怪,但他的脑袋是如此工作的。”巴塞尔大学的Norbert A’Campo有次问及 格洛腾迪克关于柏拉图体的一些情况,格洛腾迪克建议他小心点。他说,柏拉图体是如 此漂亮而特殊,人们不应该设想如此特别的美好东西在更一般情形下仍然会保持。 格洛腾迪克曾经这样说过,一个人从来就不应该试着去证明那些几乎不显然的东西。这 句话意思不是说大家在选择研究的问题时不要有抱负。而是,“如果你看不出你正在工 作的问题不是几乎显然的话,那么你还不到研究它的时候,”加州大学伯克莱分校的A rthur Ogus如此解释:“在这个方向再做些准备吧。而这就是他研究数学的方式,每样 东西都应该如此自然,它看上去是完全直接的。”很多数学家会选择一个描述清晰的问 题来敲打它,这种方式格洛腾迪克很不喜欢。在《收获与播种》一段广为人知的段落里 ,他将这种方式比喻成拿着锤子和凿子去敲核桃。他自己宁愿将核桃放在水里将壳泡软 ,或者将它放在阳光和雨下,等待核桃自然爆裂的恰当时机(第552-553页)。“因此 格洛腾迪克所做的很多事情就象是事情的自然面貌一样,因为它看上去是自己长出来的 ,”Ogus注意到。 格洛腾迪克有着给新的数学概念选取印象深刻、唤起大家注意力的名字的才能;事实上 他将给数学对象命名这种行为作为它们的发现之旅的一个有机组成部分,作为一种掌握 它们的方式,甚至在它们还没有被完全理解之前(《收获与播种》,第24页)。一个这 样的术语是etale(平展),在法语里面它原是用来表示缓潮时候的海,也就是说,此 时既不涨潮,也不退潮。在缓潮的时候海面就象展开的床单一样,这就会让人唤起覆盖 空间的概念。如格洛腾迪克在《收获与播种》中所解释的,他选用topos这个词,其在 希腊文里的原意即“空间”,来暗示“拓扑直觉适用的‘卓越对象’”这样一个想法( 第40-41页)。和这个想法相配,topos就暗示了最根本,最原始的空间概念。“moti f”(英文里的“motive”)这个概念意在唤起这个词的双重意思:一个反复出现的主 题和造成行动的原因。 格洛腾迪克对取名的关注意味着他厌恶那些看上去不合适的术语:在《收获与播种》中 ,他说自己在第一次听到perverse sheaf这个概念时感到有种“本能的退缩”。“真是 一个糟糕的想法,去将这样一个名字给予一个数学对象!”他写道,“或者给予任何事 务或者生物,除去在苛责一个人的时候——因为显而易见,对于宇宙里所有‘东西’来 说,我们人类是唯一这个术语可以适用的”(第293页)。 尽管格洛腾迪克拥有伟大的技术能力,这一直都是第二位的;这只是他执行他的更大的 观点的方式而已。众所周知,他证明了某些结果和发展了某些工具,但他最大的遗产是 创立了数学的一个新的观点。从这方面来说,格洛腾迪克和Evariste Galois(伽罗瓦 )相似。的确,在《收获与播种》很多处,格洛腾迪克写道他很强烈地认同Galois。他 也提到年青时候读过一本由Leopold Infeld撰写的Galois的传记[Infeld](第63页)。 最终来说,格洛腾迪克在数学上的成就的源泉是某种相当谦卑的东西:他对他所研究的 数学对象的爱。 停滞的精神 从1945年(我17岁的时候)到1969年(我42岁的时候),二十五年里我几乎将我的全部 精力都投入到数学研究中。这自然是过多的投入了。我为此付出了长期的精神上的停滞 的代价,这种停滞越来越“缺乏活力”,这些我在《收获与播种》中不止一次提到过。 《收获与播种》,第17页 在1960年代,哈佛大学的Barry Mazur和他妻子访问过高等科学研究所(IHES)。尽管 那时候格洛腾迪克已经有了自己的家庭和房子,他仍然在Mazur居住的大楼里保留了一 间公寓,并且常常在那里工作到深夜。由于公寓的钥匙不能开外面的门,而这道门到晚 上11点的时候就锁上了,在巴黎度过一个晚上后回到大楼就会有困难。但是“我记得我 们从来没有遇到过麻烦,”Mazur回忆道。“我们会乘末班火车回来,百分之百的确信 格洛腾迪克还在工作,而他的书桌靠着窗。我们会扔点石子到他窗户上,他就会来为我 们开门。”格洛腾迪克的公寓只是简单装修了一下;Mazur记得里面有一只电线做的山 羊雕塑和一个装满西班牙橄榄的缸子。 这种格洛腾迪克在一间斯巴达式的公寓里工作到深夜的略显孤独的形象刻划了1960年代 他的生活的一个方面。那个时候他不停地研究数学。他得和同事们讨论问题,指导学生 们的学习,做讲座,和法国外的数学家们保持广泛联系,还得去撰写看上去没有尽头的 EGA和SGA。毫不夸张地说他单枪匹马地领导了世界范围内代数几何里一个巨大而蓬勃发 展的部分。他在数学外似乎没有多少爱好;同事们说他从来不看报纸。就是在数学家中 间,他们习惯于诚实而且高度投入对待工作,格洛腾迪克也是一个异类。“整整十年里 格洛腾迪克一周七天,一天十二个小时研究代数几何的基础,”他的IHES同事David R uelle注意到。“他已经完成了这座一定得有10层高的楼房的-1层的工作,而正在第0 层上工作…到一定时候很清楚你永远也盖不成这座大楼。” 格洛腾迪克醉心于数学研究如此极度是他在《收获与播种》里面提到的“精神上的停滞 ”的一个原因,这个接下来则是他在1970年离开他已经成为其中一个领袖人物的数学世 界的一个原因。朝向他的离去迈出的一步是IHES内部的一次危机,此危机导致了他的辞 职。从1969年末开始,格洛腾迪克卷入了和IHES创始人和所长Leon Motchane关于研究 所来自军事方面的资助的冲突。如科学史家David Aubin于[Aubin]中所解释,在1960年 代,IHES的经费很不稳定,有些年里研究所从一些法国军事机构获得它的一小部分预算 ,其额度从没有超过5%。所有IHES的永久教授们对于军事资助都有疑虑,在1969年他们 坚持要Motchane放弃接受如此的资助。Montchane起初同意了,但是,Aubin注意到,他 在数月后收回了他的话,当IHES的预算岌岌可危的时候,他接受了陆军部长一笔基金。 格洛腾迪克感到非常愤怒,他徒然地劝说其他教授和他一起辞职但是没有人同意去做。 不到一年前,很大程度上由于格洛腾迪克的推荐,Pierre Deligne作为永久教授加入I HES,格洛腾迪克劝说他这位新任命的同事和他一起辞职。Deligne也拒绝了。“因为我 在数学上和他非常亲密,格洛腾迪克很惊讶而且深深失望这种数学思想上的亲密没有延 伸到数学之外,”Deligne回忆道。格洛腾迪克的辞职信写于1970年5月25日。 他与IHES的决裂是格洛腾迪克生平所发生的意义深远的转向的最明显的标志。靠近196 0年代末期的时候还有其他一些信号。有些很小。Mazur回忆道当他在1968年访问IHES的 时候,格洛腾迪克告诉他自己去看电影了——这可能是10年里的第一次。有些则比较大 。1966年当他在莫斯科国际数学家大会上荣获菲尔兹奖章的时候,格洛腾迪克拒绝参加 来作为对苏联政府的抗议。1967年格洛腾迪克在越南旅行了3周,那里显然给了他留下 很深印象。他关于越南之行的书面记述[Vietnam]描写了那些为数众多的空袭警报和一 次让两位数学教师遇难的轰炸,以及越南人在他们的国度里培植数学生活的英勇行动。 和一位叫Mitrea Dumitrescu的罗马尼亚外科医生的友谊让格洛腾迪克在1960年代后期 做了一次相当严肃的学习生物学知识冒险。他还和Ruelle讨论过物理。 发生在不平凡的1968年的那些事情一定对格洛腾迪克也有影响。那一年里全世界范围内 经历了学生的抗议示威和社会的剧变,以及苏联对“布拉格之春”的残酷镇压。在法国 ,1968年5月,大学生们罢课时运动达到了沸点,政府的政策造成了大规模的示威活动 ,而示威很快就演变成为暴乱。在巴黎,成千上万的学生、老师和工人上街抗议警察的 暴力,而法国政府,出于对革命的害怕,在城市周围驻扎了坦克。数百万的工人开始罢 工,让整个国家瘫痪了两周时间。Karen Tate,她其时正和她当时的丈夫John Tate住 在巴黎,回忆起当时无处不在的混乱。“铺路的石头,短棍和其它手边可以用来投射的 东西在空中飞翔,”她说。“很快整个国家陷入了停顿。没有汽油(卡车司机在罢工) ,没有火车(火车工人在罢工),垃圾在巴黎市内堆积如山(环卫工人在罢工),商店 架子上没有多少食品。”她和John逃到Bures-sur-Yvette,在那里她的弟弟Micheal A rtin正在访问IHES。在这次冲突中许多巴黎数学家站在学生一边。Karin Tate说示威是 统治她所知道的数学家之间交谈的话题,尽管她不记得是否和格洛腾迪克讨论过这个话 题。 格洛腾迪克从IHES辞职后不久,他就投入了一个对他而言全新的世界,政治示威的世界 。在1970年6月26日在巴黎南大学(Universite de Paris in Orsay)的讲演里,他没有 说起数学,而是谈论了核武器不停增多对人类生存造成的威胁,并呼吁科学家们和数学 家们不要以任何形式和军队合作。Nicholas Katz,他刚来IHES访问并惊讶地听到格洛腾 迪克的辞职,参加了这次演讲,根据他的说法,演讲吸引了数百人,在一个非常拥挤的 报告厅里举行。Katz回忆道在讲演中格洛腾迪克甚至说,考虑到这些对于人类迫在眉睫 的威胁,数学研究实际上也是“有害的”。 这次讲演的一个书面版本,“当今世界学者的责任:学者和军事设备”,作为一个未发 表的手稿在世上传播。在其中一个附录里描述了参加讲演的学生的敌意反应,他们散发 些小纸条嘲弄格洛腾迪克。其中一个纸条在附录里复制了下来;是一个典型的口号:“ 成功,僵化,自我毁灭:如何成为一个由格洛腾迪克遥控的小概型”。很清楚他被认为 是成功人士里令人憎恶的一员。 在这个手稿另一篇附录里,格洛腾迪克提议成立一个组织来为在环境恶化和军事冲突下 人类的生存而战斗。这个名叫“生存”的组织在1970年7月成立,正值格洛腾迪克在蒙 特利尔大学一个代数几何暑期学校上第二次做他的Orsay讲演的时候。“生存”的主要 活动是出版与它同名的时事通讯,其第一期由格洛腾迪克用英文撰写,时间为1970年8 月。这个时事通讯里描绘了一个雄心勃勃的日程,包括科学书籍的出版,以目标群为非 专家的关于科学的公共课程的组织和对接受军事资助的科研机构的抵制。 第一期上刊登了这个组织成员的名字、职业和地址的名单,一共有25人。名单上有一些 数学家、格洛腾迪克的岳母和他的儿子Serge。这个组织的主持人是格洛腾迪克和其他 三位数学家:Claude Chevalley,Denis Guedj和Pierre Samuel(《收获与播种》,第 758页)。“生存”是骚动的1960年代后涌现的许多左翼组织之一;在美国的一个类似 组织是“数学行动组织”。由于太小而且成员散得很开而不能获得很大影响,“生存” 在巴黎比在美国和加拿大要活跃些,主要归因于格洛腾迪克的存在。当他在1973年离开 巴黎时,这个组织就逐渐消失了。 在1970年夏天尼斯的ICM大会上,格洛腾迪克试着为“生存”招募新的成员。他写道, “我预期有大量的入会登记——结果(如果我没记错的话),有两到三个人”(《收获 与播种》,第758页)。然而,他的劝诱改宗引起了大量的注意。“首先,他是数学界 那时候的世界明星之一,”参加了大会的IHES的Pierre Cartier说道,“而且,你应该 记得那时候的政治气氛。”许多数学家反对越南战争并同情“生存”的反军队立场。C artier说,在大会时,格洛腾迪克在展览区两家出版商摊位间偷偷地塞进一张桌子,并 在他儿子Serge的帮助下,开始派发“生存”的时事通讯。这导致了他与老同事和朋友 Dieudonne的激烈争吵,其时Dieudonne是1964年成立的尼斯大学理学院首任院长,并负 责那里举行的ICM大会。Cartier说道他和别的一些人不成功地劝说Dieudonne允许这个 “非官方摊位”。最终格洛腾迪克将桌子挪到大会举行的大厅前面的街上。但另一个问 题出现了:在与尼斯市长棘手协商后,大会组织者承诺不会有街头示威。警察开始询问 格洛腾迪克,最后警察首长也到了。格洛腾迪克被要求只要将桌子移后几码,让它不在 行人道上就可以了。“他拒绝了,”Cartier回忆道,“他想被送到监狱去。他真的想 被送到监狱去!”最后,Cartier说,他和一些其他人将桌子移后,足以让警察满意。 尽管格洛腾迪克投入政治很突然,他决不是孤独的。他的好朋友Cartier有着相当长的 政治行动的历史。比如说,他是那些利用华沙1983年ICM大会召开的时机协商以致波兰 150位政治犯获得释放的数学家之一。Cartier将他的行动主义归因于他的老师和(政治 )导师Laurent Schwartz树立的榜样,他是法国政治声音最响亮、活动最积极的学术界 人员之一。Schwartz是格洛腾迪克的论文导师。另一位格洛腾迪克熟悉的法国数学家P ierre Samuel是法国绿党的创始人之一。在法国以外,很多数学家政治上也很活跃。在 北美最为人知的有Chandler Davis和Stephen Smale,他们都深入卷入了反对越战的示 威。 但是尽管他的强烈信念,格洛腾迪克从来没有在真实世界的政治中留下过印象。“他内 心里一直是个无政府主义者,”Cartier观察到,“在很多情况下,我的基本立场和他 的立场相差不远。但他是如此天真以致在政治上和他做点事情根本不可能。”而且他还 相当傲慢。Cartier回忆道,1965年法国一次不确定结果的总统大选后,报纸的头条是 戴高乐还没有被选上。格洛腾迪克询问道这是否意味法国将不会有总统了。Cartier不 得不向他解释什么叫重选。“格洛腾迪克是个政治文盲,”Cartier说。但他的确想帮 助大家:给那些无家可归者或者其他需要的人士提供几周的住处对于格洛腾迪克并不是 什么不寻常的事。“他非常慷慨,他一直非常慷慨,”Cartier说,“他记得他的少年 时代,他困难的少年时代,那时候他母亲一无所有,他时刻准备着来给予帮助——但是 这种帮助不是政治上的。” 疯狂的70年代 1970年我从一个环境进入到另一个环境——从“第一流”人士所处的环境来到“沼泽地 ”;突然间,我的大多数新朋友们是一年前这个地区中我还心照不宣地置之于无名无貌 的那群人。这个所谓的沼泽突然间动了起来,从这些和我共同历险——另外一个历险— —的朋友们的脸上展现出生命的迹象。 《收获与播种》,第38页 “荣誉勋位勋章(Legion d’Honneur)!荣誉勋位勋章!”格洛腾迪克从礼堂后部大 喊,手里挥动着一张纸,上面描摹着荣誉军团十字勋章,由法国政府授予的殊勋。这个 场景发生在一次关于模函数的暑期学校开幕当天,其于1972年夏天在安特卫普举行并得 到北大西洋公约组织(NATO)的资助。格洛腾迪克长期以来的朋友,Jean-Pierre Ser re,刚刚被授予荣誉勋位勋章,正在台上发表开幕演说。格洛腾迪克走近Serre问道: “你是否介意我到讲台上说点事情?”Serre回答说,“是,我很介意”然后离开了礼 堂。格洛腾迪克走上讲台开始演说反对北约对这次大会的支持。别的一些数学家也同情 这种观点:一个例子是Roger Godement,他于1971年4月发表了一封公开信来说明他拒 绝参加这次会议的理由。 其时不为格洛腾迪克所知的是,Cartier和其他一些对于北约的资助感到不安的数学家 已经做了详细的协商,请来一位北约代表与会和他们公开辩论。Cartier和其他人将格 洛腾迪克劝下讲台,但是损失已经产生了:Cartier很快就收到这位北约代表打来的愤 怒的电话,他已经听说了这次爆发而拒绝前来,深信作一次有序的辩论的条件已经被破 坏了。“对于我来说,这是件很悲哀的事,因为就我的记忆,我认为听众中大多数人政 治上站在格洛腾迪克这一边。”Cartier注意到,“就是和他的政治观点或者社会观点 接近的人也反对他这种行为…他表现得就象个十几岁的野孩子。” 到安特卫普会议的时候,格洛腾迪克已经切断了很多曾经围绕着他的专注于数学的有序 生活的联系。首先,他不再有一个永久职位。在他1970年离开IHES后,Serre给他在法 兰西学院安排了一个为期两年的访问职位。这个精英学院和法国其他大学运作不一样( 从这点来说,和别的任何地方都不一样)。学院里每一位教授必须提交他或者她这一年 里计划讲授的课程的提纲,给由所有教授组成的大会上来获得批准。Serre回忆道格洛 腾迪克提交了两个纲要:一个是关于数学的而另一个是关于“生存”组织所关心的政治 主题。委员会批准了数学提纲而拒绝了另一个提纲。于是格洛腾迪克在数学讲演前会发 表长篇政治演说。两年后,他申请法兰西学院一个由于Szolem Mandelbrojt的退休而空 缺下来的永久职位。格洛腾迪克递交的CV(curriculum vitae,简历)中明白地表示他 计划放弃数学而专注于那些他认为远比数学更紧急的任务:“生存的需要和我们星球稳 定而人道的秩序的提倡。”学院怎么可能给一个人数学职位而他却申明自己不再做数学 了呢?“他被很正确地拒绝了,”Serre说道。 也就是在格洛腾迪克离开IHES不久这段时期,他的家庭生活破碎了,他和妻子分居。在 离开IHES两年内,格洛腾迪克花了很多时间在北美的大学数学系里讲演。他坚持只有也 安排他作政治演说的时候他才会去作数学报告,通过这来传播他的“生存”信仰。在1 972年5月一次这样的旅行中,他访问了Rutgers大学并遇见了Justine Bumby(那时候的 姓是Skalba),她当时是Daniel Gorenstein的学生。被格洛腾迪克的个人魅力所俘虏 ,Bumby抛弃了她的研究生生活来追随他,先是陪他美国之行剩余的部分,然后来到法 国,在那里她和他共同生活了两年。“他是我见过的最聪明的人,”她说道,“我非常 敬畏他。” 他们的一起生活在某些方面象征了1970年代那些反文化的年代。有一次,在Avignon一 次和平示威中,警察开始干预,骚扰并驱逐示威者。当他们开始对付格洛腾迪克的时候 ,他变得非常愤怒,Bumby回忆道。“他是个好拳击手,因此很敏捷,”她说,“我们 看到警察向我们走来,大家都很害怕,接下去我们看到的是这两个警察已经躺在地上了 。”格洛腾迪克独手打发了两个警察。其他警察将格洛腾迪克制伏后,Bumby和他被捆 着放在一辆货车里送到警察局。当他的身份文件显示他是法兰西学院的教授后,他们俩 被送去见警察局长,他和他们用英语交谈,因为Bumby不会说法语。一段短暂的谈话后 ,在其中警察局长表达了他希望避免教授和警察发生冲突的愿望,警方没有提起控诉而 释放了他们俩。 Bumby来到法国和格洛腾迪克一起后不久,他在巴黎南面Chatenay-Malabry租下的一个 大房子里组织了一个公社,他们一起住在那里。她说他在房子的地下室售卖有机蔬菜和 海盐。这个公社是个忙乱的地方:Bumby说格洛腾迪克在里面开会来讨论“生存”组织 提出的一些问题,会议的参加者可能达百人之多,也吸引了相当的媒体关注。然而,公 社由于成员间相当复杂的个人关系而很快解散了。就在这个时候格洛腾迪克在法兰西学 院的位置结束了,在1972年秋天他接受了巴黎南大学一个临时的为期一年的教学职位。 这之后,格洛腾迪克得到了一个叫做professeur a titre personnel的位置,这个位置 是为个人设立的而可以带到法国任何大学里去。格洛腾迪克将他的位置带到蒙彼利尔大 学,在那里他一直呆到1988年退休。 1973年春天他和Bumby搬到法国南部一个叫Olmetle-sec的乡村村庄里。这个地区那时候 是嘻皮士和其他那些在反文化运动中渴望回到一种靠近土地的简单生活方式中去的人的 集中地。在这里格洛腾迪克又尝试开办公社,但是个人矛盾导致了它的失败。在不同的 时候,格洛腾迪克的三个孩子在巴黎和在Olmetle开办的公社住过。后面这个公社解散 后,格洛腾迪克和Bumby及他的孩子搬到不远处的Villeucun。Bumby注意到格洛腾迪克 很难适应这些被吸引到反文化运动的人们的处事方式。“他数学上的学生都是很认真的 ,而且很有纪律,工作非常努力,”她说道,“在反文化运动中他则见到些整天晃荡听 音乐的人。”曾经作为数学上无可置疑的领袖,格洛腾迪克发现自己正处在一个非常不 同的环境里,在这里他的观点不是一直都被认真看待的。“在做代数几何的时候他习惯 于别人认同他的观点,”Bumby评价道,“当他转向政治时,所有那些以前应该会同意 他的人突然间和他意见相左了…这可不是他习惯的事。” 尽管格洛腾迪克大部分时候非常温情,非常有爱心,Bumby说,他有时候情绪会有激烈 的爆发,接下去是一段时期内沉默冷淡。也有些时候在烦扰时他会用德语自言自语,尽 管她不懂德语。“他会不停地说下去就当我不在那一样,”她说道,“这有点让人害怕 。”他很节俭,有时候是强制性地节俭:一次,为避免将剩下的三夸脱的咖啡倒掉,他 就喝了它——结果可想而知,他很快生了病。Bumby说她认为他的说德语和过度节俭在 心理学上可能和他童年时遭受的困苦、特别是他和母亲在战俘收容所生活那段时期有关 联。 格洛腾迪克可能曾经遭遇过某种形式的心理崩溃,如今Bumby还想知道当时她是否应该 为他寻求治疗。他是否会去接受这样的治疗我们也不清楚。在他们的儿子约翰于1973年 秋天降生后不久他们就分手了。在巴黎呆了一段时间后,Bumby搬回美国。她和Rutger s大学一位叫Richard Bumby,丧偶的数学家结婚,他们共同抚养约翰和Richard的两个 女儿。约翰显示了相当的数学才能,他是哈佛大学数学专业的学生。最近他在Rutgers 完成统计学博士学位学业。格洛腾迪克和他这个儿子没有联系。 在1970年代早期,格洛腾迪克的兴趣和他抛在脑后的那个数学世界的人们很不一样。但 是那个世界在1973年夏天以一种高调的方式闯入了,此时在英国剑桥大学举行的向W.V .D. Hodge致敬的会议上,Pierre Deligne做了一系列的演讲,叙述他关于韦依猜想中 最后也是最顽固的那个猜想的证明。格洛腾迪克以前的学生老耶律参加了会议并写信告 诉他这个消息。出于想知道更多一些情况,格洛腾迪克由Bumby陪同在1973年7月访问了 IHES。 1959年Bernard Dwork使用p-adic的方法证明了第一韦依猜想(它是说有限域上的代数 簇的zeta函数是有理函数)。格洛腾迪克1964年的l-adic证明则更一般并引入了他的“ 六种运算的形式化”。在1960年代,格洛腾迪克也证明了第二韦依猜想(它是说代数簇 的zeta函数满足函数方程)。去寻求方法来证明最后一个韦依猜想(有时候也叫“同余 黎曼假设”)是他很多工作的主要推动力。他提出了他所谓的“标准猜想”,这些如果 被证明了,则推出所有的韦依猜想。标准猜想在差不多同一时候也被Enrico Bombieri 独立提出。到现在,标准猜想还是不可接近的。在证明最后的韦依猜想的时候,Delig ne找到一个聪明方法让他可以绕过它们。他使用的一个主要思想来自R.A.Rankin一篇关 于模形式经典理论的文章[Rankin]而格洛腾迪克不清楚这篇文章。如John Tate指出, “对于最后的韦依猜想证明,你需要另外一个更经典的成分。那是格洛腾迪克的盲点。 ” 当Bumby和格洛腾迪克那个夏天出现在IHES的时候,其中一个访问学者是明尼苏达大学 的William Messing。Messing在1966年时首次见到格洛腾迪克,在他作为普林斯顿大学 研究生参加格洛腾迪克在Haverford学院做的一系列报告的时候。这些报告给Messing留 下了深刻印象,格洛腾迪克成为他非正式的论文导师。1970年Messing在蒙特利尔会议 上“生存”组织成立的时候加入了组织。接下一年,当格洛腾迪克访问安大略省的Kin gston大学(? 应该是Queens大学)时,他和Messing驾车去看望了Alex Jameson,一位住 在纽约布法罗市附近保留地的印第安人活动家。格洛腾迪克正在追求一个堂吉柯德式的 梦想来帮助印第安人解决关于土地条约的一个争端。 在1973年夏天,Messing住在Ormaille——为IHES访问者所提供的一组住房——的一个 小单间里。在数学家中间弥漫着对于Deligne的突破产生的兴奋气氛。“格洛腾迪克正 和Justine(Bumby)一起,”Messing回忆道,“他们过来吃晚饭,Katz和我花了整个 晚上解释给格洛腾迪克在Deligne关于最后韦依猜想的证明中主要的新的和不同的东西 。他相当兴奋。”同时,格洛腾迪克也显示出对证明绕开回答标准猜想是否正确这个问 题的失望。“我认为他当然会非常高兴,如果他自己能够证明所有的韦依猜想,”Kat z评价道,“但是在他脑子里,韦依猜想很重要是因为它们是那座反映了他想发现和发 展的数学上的一些根本结构的冰山的一角。”标准猜想的证明则可以更加清楚地显示这 些结构。 在这次访问中,格洛腾迪克后来也和Deligne本人见面来讨论这个证明。Deligne回忆道 格洛腾迪克对这个证明的兴趣不如如果证明是用motive的理论引起的兴趣。“如果我使 用motives证明了它,他一定会非常兴奋,因为这意味着motives的理论得到发展了,” Deligne评论道,“由于这个证明使用了一个技巧,他就不那么关心了。”为尝试发展 motives的理论,格洛腾迪克遇到一个主要技术难题。“最严重的问题是,要让他关于 motives的想法工作,一定得能够构造足够多的代数链,”Deligne解释道,“我想他一 定很努力地尝试过但是失败了。而从此以后没有人获得成功。”根据Deligne的意思, 发展motives理论遇到的这个技术障碍可能远比他不能够证明最后的韦依猜想更让格洛 腾迪克感到沮丧。 遥远的声音 我在1970年离开数学的“伟大世界”…在从事数年反对军用和维持社会生态的如“文化 大革命”形式的战斗后,关于这些毫无疑问你曾经在这儿或那儿听到过一些情况,我几 乎从大家的视线里消失了,迷失在某个省份一所大学里,天知道是在哪里。谣言是说我 去放羊和钻井来消磨时光。实际上我不是去从事许多其他的职业,而是勇敢地,如同任 何人一样,去系里面教课(这是我起初赚取面包的方式,到现在还是这样)。 《收获与播种》,第L3页 当格洛腾迪克在1973年来到蒙彼利尔大学时,Yves Ladegaillerie,时年25岁,3年前 刚从巴黎Poincare研究所获得博士学位,是那儿一位大学讲师。格洛腾迪克提议Ladeg aillerie跟他在拓扑方面做these d’etat(第二论文,证明其可以从事某项职业), 因此花了大量时间来指导这位年轻数学家适应他的观点和方法。在一个关于格洛腾迪克 的简短回忆中,Ladagaillerie写道:“我在巴黎时候曾经有那个时代一些伟大数学家 ,从Schwartz到Cartan作为老师,但是格洛腾迪克完全不同,如同一个外星人。他不是 去将事情翻译成另外一种语言,而是直接用现代结构数学的语言来思考和叙述,这种结 构数学的建立他作出过很大贡献”[Ladegaillerie]。一次,为了验证某个关于辫子的 代数计算,Ladegaillerie用线和一个带孔的小木版做了个小小模型。这个让格洛腾迪 克开怀大笑:“那个时刻,他就象站在刚表演完戏法的巫师前面的一个孩子,他告诉我 :‘我永远也不会想到这样去做’。” 格洛腾迪克在离蒙彼利尔35英里的Villecun一个没有电的老房子里面过着一种苦行僧式 的的非传统的生活。Ladegaillerie记得在那看到过Justine Bumby和她的小婴儿,不过 很快她就走了。许多朋友、熟人和学生去那里拜访过格洛腾迪克,包括那些在生态运动 方面的人。1974年一位日本佛教传教团的领队去访问了格洛腾迪克,从那以后,很多佛 教信徒造访过他家(《收获与播种》第759页)。有一次,招待一位旅行证件不完整的 和尚后,格洛腾迪克成为法国历史上第一位由于1949年通过的一条不引人注意的法律: “免费给处于非正常状态的陌生人提供住处和食物”非法,而受到起诉的人(《收获与 播种》,第53页)。作为一个整个一生没有国籍的人,格洛腾迪克非常愤怒,他试着发 起一项运动来发对这项法律。他甚至去巴黎在一次布尔巴基讨论班上说起这个。他的运 动成为了法国国家级报纸的头条新闻。最终他支付了罚金并受到一个缓期判决。 就是在这个时候格洛腾迪克学会了开车。他有部古老的雪铁龙,一个型号为2CV而以非 正式地名称deux chavaux闻名的汽车。他的一个学生,Jean Malgoire,现在蒙彼利尔 大学的讲师,回忆起一次和格洛腾迪克在倾盆大雨中开车的恐怖经历。除了是一位很蹩 脚的司机外,格洛腾迪克更是集中精力向他的乘客论道而不是注意路况。“我确信我们 不会活着到目的地的!”Malgoire说道。“我明白亚历山大和现实生活有着一种特殊联 系…与其去适应那些实在的东西,他宁可相信现实会去适应他。”一次,在驾驶一辆机 动脚踏两用车时,格洛腾迪克和一辆汽车面对面撞上了。根据Ladegaillerie的说法, 他将目光从路上转到去从自己背后包里拿杏去了。尽管他一条腿骨折需要手术,他还是 要求将针刺麻醉作为唯一的麻醉剂。只是在外科医生告诉他唯一的另一种选择是将断腿 锯掉后他才同意使用抗生素。 在蒙彼利尔大学,格洛腾迪克有一个正式的教员职位并且在所有的级别上过课。尽管学 生不如他以前在巴黎的学生那么强,他然而在教学上投入了大量的精力、热情和耐心。 他有一种非传统式的教学方式。作为一次关于多面体的考试,他让学生提交用纸粘起来 的模型,这让那些必须使用考试卷子来评分的人感到非常惊慌。一位曾经在蒙彼利尔上 过他的大学课程的人是现在是斯坦福大学统计学家Susan Holmes(福尔摩斯)。“我发 现他非常令人鼓舞,因为他对学生既不按传统办事,又很和蔼,他们真的一点也不知道 他是一位伟大的数学家,”她回忆道。他穿着嬉皮士式的破烂服装来上课,并在班上分 发他自家生产的有机苹果。“他的确没有用大学生适应的线性思维形式来解释问题,但 是他的教学非常令人鼓舞,大家会得到某个奇妙而神秘的‘大图像’的印象。”Holme s说。 格洛腾迪克从来不是一个靠阅读来学习和理解数学的人。和别人聊天曾是他了解这个领 域正在干什么的主要方式。在IHES时口头交流是他数学交流的主要模式,从那种热烈而 富有刺激性的气氛中离去对他而言是个巨大的变化。与他1960年代保持的步伐比较,格 洛腾迪克后来的数学工作是零星的。尽管他在蒙彼利尔有一些博士生,他没有建立过象 IHES时期那样以他为首的兴旺发达的学派。他巴黎时代一些以前的学生和同事来过蒙彼 利尔拜访他。所有来访者中最频繁的是Deligne,在整个1970年代他是让格洛腾迪克知 晓最新数学进展的主要人物。 在蒙彼利尔,格洛腾迪克没有一个固定时间碰头的讨论班。他和Ladegaillerie,Malg oire还有其他一些他的学生组成了一个小的学习团体,但根据Ladegailleire的说法这 个团体事实上从来没有活动过。在1980年到1981年,他组织了一个关于伽罗瓦群和基本 群的关系的讨论班,其唯一的参加者是Malgoire。这个主题正是他1981年完成的1300页 的手稿《通过伽罗瓦理论的长征》的主题。格洛腾迪克从来没有发表《长征》,但通过 Malgoire的努力,它的一部分在1995年由蒙彼利尔大学出版[Marche]。那里也曾有过一 个小型工作讨论班,Ladegaillerie在上面给了几次关于William Thurston在Teichmul ler空间上的工作的报告,这激起了格洛腾迪克在这个学科的兴趣。 到1980年代,格洛腾迪克觉得他已经做了他所能做的事来试着激发蒙彼利尔这些不那么 热心的学生,于是决定去申请科学研究国家中心(CNRS)的研究员职位。CNRS是一个法 国政府机构,雇用数学家和科学家来做研究。CNRS的职位以大学或者研究所作基地,通 常都无需教课。在1950年代,他去IHES之前,格洛腾迪克曾经有过CNRS的职位。在197 0年代他申请过重新进入CNRS但被拒绝了。那时候,巴黎南大学的Michel Raynaud正在 评价申请者的数学家委员会里。Raynaud说CNRS的管理部门很犹豫去将格洛腾迪克招募 进来,争辩说不清楚他是否会继续数学研究。委员会不能反驳这个说法,于是申请被拒 绝了。 当格洛腾迪克在1984年重新申请CNRS时,他的申请又一次具有争议性。Jean-Pierre B ourguignon,如今IHES的所长,是负责评价数学方面申请者的委员会的主席,其中一位 申请者就是格洛腾迪克。根据Bourguignon的说法,在申请所要求的一封手写的信中, 格洛腾迪克列举了一些他不会去执行的任务,比如指导学生研究。因为CNRS的合约要求 研究人员履行其中某些任务,这封信被CNRS管理部门看作是格洛腾迪克不符合条件的证 据。Bourguignon说他试着让格洛腾迪克去修改他的申请使得那些他拒绝执行的任务不 要明显地写在那里,但是格洛腾迪克不愿意这样去做。在很多人的大量努力下,格洛腾 迪克最终被放到一种叫做position asteriquee(“加星号的职位”)的特殊职位上, 这样安排让他和CNRS都能够接受。CNRS实际上并没有雇用他而只是负责给他发薪水,而 他仍保持他的大学雇用关系。因此1988年退休前在蒙彼利尔最后几年里,格洛腾迪克不 用教课,他呆在大学里的时间也越来越少。 格洛腾迪克1984年CNRS申请的数学部分就是现在著名的手稿《一个纲领的提纲》(Esq uisse d’un Programme)。在其中,他用某种神秘的但然而同时又很敏锐而具有远见 的方式,略述了一个他称之为“anabelian代数几何”的新领域。他也思考了一般拓扑 的不足而提出了一个以他称做是“驯顺拓扑”的形式出现的更新概念的想法。《提纲》 也包括了他的关于dessins d’enfants(“儿童的想法”)的想法,这个想法他最初发 展的时候是为了有个简单方式来给学生解释代数几何的一些概念,从那以后它已经激起 了大量的研究。格洛腾迪克将他的《提纲》寄给了那些他认为可能会感兴趣的数学家, 这个手稿多年里以未出版形式在专家手中传播。 巴黎六大的Leila Schneps是在1991年的时候读到《提纲》的。在此之前她是将格洛腾 迪克和奠基性著作EGA和SGA等同起来,此时她发现《提纲》却完全不同。“这是数学想 象力的狂热表现,”她回忆道:“我太喜欢它了。我被它击倒了,我希望马上在它上面 工作。”她成为《提纲》上描述的研究纲领的热情的传道者,而她和其他人已经在其上 做了相当大的进展。她说:“其中有些东西初次看上去甚至觉得没有意义,不过等你工 作两年后再回去看看,你就会说,‘他知道这’。”她编辑了一本关于dessins d’en fants的书,其于1994年出版[Schnelps1],在1995年她和同属巴黎六大的Pierre Loch ak一起组织了一个关于《提纲》的会议。《提纲》第一次以印刷形式出现在这次会议论 文集上[Schneps2]。 除去《提纲》和《长征》外,格洛腾迪克在1980年代至少还写过另外一本数学著作。A la Poursuite des Champs(Pursing Stacks,《探索Stacks》),其长达1500页,开始 于给牛津大学的Daniel Quillen的一封信。此书完成于1983年,勾画了格洛腾迪克关于 同伦代数、同调代数和topos理论的整合的观点。《探索Stacks》在数学家手中广泛流 传但从没有出版过。尽管它的主题是数学,《探索Stacks》的风格和他早先的数学写作 风格完全不同。它写得象是数学发现旅程的“日志”,其中包括所有的错误开始、错误 转向和突然而来的灵感,这些东西刻划了数学发现的历程但是在写好了的数学著作中经 常被省略掉了的。当非数学的事情引起他的注意时,这些事情也成为了“日志”的一部 分:比如,《探索Stacks》中就包含一段关于他一个孙子的出生的事。在1990年代,他 写作了一本2000页长的名叫Les Derivateurs的关于同伦论基础的数学著作,他在1995 年将此书交给Malgoire,现在它可以在网上获得[Deriv]。 当他在蒙彼利尔的时候,格洛腾迪克的不妥协,“反传统”的倾向看上去更明确了。L adegaillerie的论文完成后,格洛腾迪克给Springer写信建议它发表在其Lecture Not es系列上。当他收到回信说起这个系列不再发表论文的时候非常的愤怒。不管怎样论文 还是提交去发表了,但可想而知它被拒绝了。根据Lagegaillerie的说法,格洛腾迪克 给同事写信,计划建立起一个抵制Springer的运动。Ladegallairie决定将论文作为几 篇文章而不是作为一个整体发表,其中主要部分发表在Topology上。格洛腾迪克责备他 将这个工作分切成可发表的部分。如Ladegaillerie指出,格洛腾迪克试着将他放到他 “反对传统的战斗”的盟友名单上去。但是Ladegaillerie抵制了这个尝试,认为这样 的战斗不合理也不会被证明是正确的。 “尽管如此意见不一,我们还继续是朋友,关系时好时坏,”Ladegaillerie说道。关 于他和格洛腾迪克一起的工作,Ladegaillerie说,“和一个天才工作真让人入迷。我 不喜欢用天才这个词,但对格洛腾迪克而言没有别的可能的词来形容…真的很迷人,但 也很令人害怕。因为这个人不是普通人。”在煤油灯下与格洛腾迪克做数学工作直到深 夜的记忆,是“我作为数学家的一生最伟大的记忆。” 收获与播种 在《收获与播种》里描述了很多事情,不同的人无疑会在里面看到许多不同的事情:过 去发现的历险;对于存在的冥思;对于一个时代一个环境里精神的描绘(或者是对从一 个时代到另一个时代的阴险而无情的变化的描绘…);一次侦查(在数学都市的薄弱部 位里,有时几乎是侦探形式的而在别的时候则近乎于间谍小说方式的侦查);一次大型 的数学漫游(这个会让很多读者感到难以理解…);应用心理学的实用读本(或者,如 果你愿意,一本“心理分析小说”类别的书);自身知识的吹捧;“我的自白书”;一本 私人日记;发现和创造的心理学;一次控诉(无情的但又是恰如其分的);甚至是和“ 精英数学世界”的清算(而且没有任何礼物)。 《收获与播种》,第L2页 在1983年6月到1986年2月间,格洛腾迪克写作了《收获与播种:一个数学家过去的回顾 和证词》(Recoltes et Semailles: Reflexions et temoignage sur un passé de mathematicien)。 这部著作不是很好归类的。它的题目揭示这是部回忆录,但《收获 与播种》包含比一本回忆录更多的东西。更多表现在它不仅包括他生平发生的事件的回 忆,而且也包括对那些事件的道德和心理意义深入细致的分析和他用对自己和对世界的 观点来调和那些意义的尝试。这些分析导致了他对于发现和创造在数学或者更一般意义 上扮演的角色的哲学冥思。同时,《收获与播种》又比一般的回忆录少点东西,这个表 现在它没有尝试去系统而全面地记述格洛腾迪克生平发生的事件。他不是为未来的传记 作家或者历史学家来写作的,而主要是为了他自己。《收获与播种》是对最靠近他内心 的事情的探查。他带给此书如他带给数学一样,是一种求索的好奇心,是一种到事情的 最底部去寻求答案的方法。其结果是一部厚重而多层次的著作,它揭示了一个伟大而有 时又令人恐怖的头脑在执行试图理解自己和世界的艰巨任务。 不需要多说,《收获与播种》不是容易阅读的,格洛腾迪克给他的读者们设了很多条件 。书中很大一部分来自于他的日常感觉,在有些部分很明显他的想法是从一天演化到另 一天时才固定下来。因此在一页纸内就可能会有突然的有时候甚至令人不安的情绪和主 题的变化。书的组织很复杂。主要的内容分成数字标记的几节,每一节都有一个细心选 定的引人注意的标题。在每一节内有到另外一节的交叉引用,还有众多的脚注,它们有 一些相当长而且内容丰富,有时候甚至有脚注的脚注。来源范围很广的词汇量对那些母 语不是法语的人是个很特别的挑战,同样造成挑战的是他习惯使用口头语,其中某些还 很庸俗。自始至终格洛腾迪克写作得很细心、深具洞察力、清楚、带着一种辛辣而吸引 人的方式。他常常成功地描绘出那些初看上去难以描述的事务。 《收获与播种》的结构复杂性和它的自发性的一个原因是由于格洛腾迪克写作的时候脑 子里没有一个明确的计划。他开始写的时候是作为《探索Stacks》的导论,该书原本是 标志着他的认真投入时间和精力研究和出版数学的回归。这个导论计划用来解释他研究 中的新精神,它不再是专注于他早期工作中精确而详尽的基础建设,而是将读者带到新 数学世界的“发现之旅”。格洛腾迪克预想《收获与播种》作为一个叫做《回顾》的系 列里面的第一卷,这个系列将包含他对数学和其他方面事情的看法和回顾。第二卷会是 《探索Stacks》,而《通过伽罗瓦理论的长征》和《一个纲领的提纲》也打算包含在这 个系列里。 在《收获与播种》的第一部分,这个部分他标题为“满足与复兴”,在此格洛腾迪克对 于他工作的数学界做了很多自我反省。在他1948年作为新来者加入数学界时受到的欢迎 气氛开始消失了,他说道,由于数学家们开始利用他们的名声来将自己置于优势地位。 数学成为获得权力的一种方式,而现在的精英数学家们成了一群自鸣得意、让人害怕的 人,他们利用获得的权力来阻碍和鄙视别人,如果这样做符合他们的利益的话。他悔恨 地回忆起在几个场合里他自己表现出的狂妄和傲慢的态度,意识到这样的态度已经成长 为一种“好玩的”或者竞赛性的研究数学的方式,这种方式已经阻碍他将自己开放给数 学对象的美丽的能力。 正是在完成“满足与复兴”后,他突然受到“这种关于我全部作品和与此同时我本人被 埋葬的阴险现实,其在1984年4月19日突然间以一种不可抗拒的方式并且带着同样的名 字‘葬礼’强加于我”的影响(《收获与播种》,第L8页)。在那一天他开始写作最终 作为三部分组成的系列,名字就叫“葬礼”,其长度超过1000页。在其中他强烈攻击了 他一些昔日的学生和同事,那些人他认为试图通过盗窃他的思想和不给予他应得的荣誉 来将他的工作和他做数学的方式“埋葬”。他也称赞了Zoghman Mebktout的工作,他在 1970年代发展了格洛腾迪克的一些想法而他的工作格洛腾迪克认为被不公平地边缘化和 忽视了。“葬礼”中提出了六个数学领域,或者叫作“建筑工地”,他说这些当他197 0年离开IHES后就被放弃了而他认为他的学生们本应该继续发展的。在“葬礼”这个系 列,自始至终,他近距离地分析了他和Deligne的关系,其是所有他的学生中最杰出的而 且和他有着最紧密的数学上的密切关系。 “葬礼(II),或言到阴和阳的钥匙”与“葬礼”其他两部分相当不同,它不是那么直 接关于对“葬礼”的调查。这个第二部分,格洛腾迪克解释为《收获与播种》中最个人 也最深刻的部分,包含了对于很分散的主题,例如创造性、直觉、暴力、冲突等的大范 围思考。他使用“阴-阳”辩证法来分析做数学的不同方式,总结说他自己的方式是彻 底的“阴”,也就是雌性的。他的这个方式记录在一个特别引人注目的章节,标题为“ 漫升的海洋…”。他将他研究数学的方式比喻为海:“海洋的前进无声无息,好象什么 事情都没有发生,什么都没有被打搅,海水是如此之远人们几乎听不到它。但结果它却 包围了最顽固的物体,其渐渐变成了半岛,然后是岛屿,然后是小岛,最终被淹没了, 就好象被无边无际伸展的大洋溶解了一样。”(《收获与播种》第553页)。 在“葬礼”里他继续探索了一些在“满足与复兴”里已经建立的主题,即关于数学世界 上层存在的竞争性和势利的态度。比如,他解释说他的大部分工作都标记着“服务的态 度”:出于对数学界的服务而去写作清楚而又全面的著作使得根本而基础性的思想广泛 流传。尽管他坦率承认他的自负有时也导致他精英式态度,他说,但是他从没有忘记自 发的服务意识,“对所有和我一起迈入共同历险的人的服务”(《收获与播种》,第6 30页)。他认为,由于个人强化和排外的精英团体的形成成为现代社会的体制,数学界 将服务意识丢失了。 除去“满足与复兴”和组成“葬礼”的三个部分外,《收获与播种》包含两卷引论,以 及“到阴和阳的钥匙”的一个附录。大约200份复印件寄给了他的数学同事。尽管格洛 腾迪克有意出版,《收获与播种》原本法文版从来就没有出版过,因为里面包含的强烈 攻击可能有损名誉。然而,它被广泛流传。其复印件可以在世界各地、特别是法国的数 学家的书架上,以及一些大学和数学研究所的图书馆里找到。Rennes大学的Alain Her reman已经采取行动将包含全部法语原文的html文件放在网上,而部分英语、俄语和西 班牙语翻译也已经放置在那里[R&S]。《收获与播种》一大部分的日语翻译由通过“生 存”组织而认识格洛腾迪克的Yuchi Tsuji完成,并在1990年代由数学出版商Gendaisu gakusha出版。根据2001-2004年担任法国数学会(SMF)会长的巴黎六大的Michel Wal dschmidt的说法,学会在他担任会长时曾考虑是否出版《收获与播种》。这个问题引起 了支持和反对双方强烈的意见,Walschmidt说,最终法国数学会决定不予出版。 很多数学家,特别是一些格洛腾迪克从前的学生,被《收获与播种》里的指责震惊,并 觉得很受伤。他们其中一个,巴黎南大学的老耶律曾经和另外一个昔日学生Jean-Loui s Verdier谈论他们是否应该试着去和格洛腾迪克讨论这些指责。根据老耶律的话,19 89年过世的Verdier觉得格洛腾迪克其时的想法不足以让讨论有个合理基础。但是,老 耶律说:“我想,‘格洛腾迪克不可能变成这样。我会试着说服他,我会和他谈谈。或 许我和他能够在他的一些正确观点和一些错误观点上达成一致。’最终,我们在一些非 本质观点上达成一致,但真正的东西则不了了之,而他仍然确信所有的人都反对他。” 在《收获与播种》中,格洛腾迪克说,自从他在1970年离开数学世界后,他做数学的方 式就被蔑视而他开拓的许多道路没有得到拓展。的确那个时代后,代数几何研究开始转 向,将那种刻划他工作的高度一般化的方式和研究具体问题结合起来。Deligne对韦依 猜想的证明,是1970年代最伟大的发展之一,其很大程度上是格洛腾迪克思想的功劳, 但也融入了许多新的思想。伴随D-模理论和Deligne的混合Hodge理论的发展,更大的注 意力开始集中在更多的具体问题上,比如代数簇的分类问题和低维代数簇的一些问题。 还有,1972年安特卫普会议后,代数几何和表示论的合作开始增加,导致了自守形式理 论和Langlands纲领的发展。如老耶律所指出,所有这些发展表明存在一个“相当程度 上一般理论和具体例子间的相当自然的平衡,来丰富理论本身。” 《收获与播种》也包含了指控说格洛腾迪克的工作不是一直都正确归功的。确实他的工 作如此广为人知而且如此根本,很多荣誉不是那么具体地给予了他。“例如,确实所有 人都知道他发明了motives,或者l-adic上同调等等,因此没有必要每次使用它们的时 候都去引用他的名字,”Jean-Pierre Serre评价说,“他的名字由于这个原因很少被 人提到。但另一方面,众所周知这是归功于他。没有人说它归功于别人。”Serre解释 说格洛腾迪克对缺乏足够荣誉的抱怨和他在1960年代的行为形成鲜明对照,在那时他非 常大方地分享想法,甚至在某些时候将别人的名字附在他自己提出的想法上。“由于这 个原因阅读《收获与播种》真是让人感到悲伤。” 就算承认存在着从格洛腾迪克式数学的转向和荣誉不是总具体的归功与他,从此到他声 称发生的有预谋的“埋葬”还是有一个巨大的跳跃。“回过头来看,很少有数学思想曾 经如格洛腾迪克的思想一样被广泛使用,”老耶律说道,“所有现在在做代数几何或算 术几何的人使用格洛腾迪克的语言、思想、定理等等。他设想自己会被埋葬真是完全荒 谬的。”毫无疑问,在格洛腾迪克1970年中止他的研究生涯时,数学蒙受了巨大的损失 。但是数学没有停止;其他人继续工作,追随他们自己的想法和兴趣。在1986年2月, 当收到一本《收获与播种》后,Serre给格洛腾迪克写信说:“你很惊讶而且愤怒你从 前的学生们没有继续你已经开始而且几乎完成的工作。但你没有问这个最明显的问题, 这个所有读者希望你回答的问题:而你呢,为什么你放弃你的问题中提起的那些工作? ”[Corr] 尽管“葬礼”的指责恶名远扬,在《收获与播种》中有着更多的内容。那些曾经读过超 过上述部分的人都被著作的美感和洞察力深深感动。格洛腾迪克对数学世界高度竞争的 气氛如何导致了创造力的窒息和领域的更新的批评让很多人都认同。在《收获与播种》 里,格洛腾迪克将促成创造的脉动诞生的这种天真的、如孩子般的好奇心赋予了最高的 价值,他悲痛其被竞争及对权力和威望的渴求而惨遭蹂躏。 “我是相当可能是少数的那些认为《收获与播种》是一部不可思议的文献的人之一,” William Messing说道,“这不是说其中没有什么部分是过分的而且具有可能被认为是 偏执狂的一些特征。但是非常令人震惊的是创作了EGA和SGA的人竟然会用这种形式来写 作。这种系统而内省的方式是和他研究数学的方式一致的。那些真正读过它的人——和 那些只是看了5页负面评价的人对比——更趋向认为它是一部很不寻常的文献。” 轻盈的降落 现在我不再,如我曾经那样,是繁重任务的囚徒,这些任务常常阻止我跳入到数学或者 其他方面的未知世界里去。任务的时代对我而言已经结束了。如果说年纪带给我什么的 话,那就是轻盈。 《一个纲领的提纲》 “科学职业(特别在数学家之中)的道德规范已经退化到如此地步以至于同事间纯粹或 者简单的盗窃(特别是以那些无力保卫自己的人为代价的)几乎成为了一条普适法则而 且无论怎样都为大家所容忍,即使在最明目张胆和最不公正的情形。”格洛腾迪克在1 988年4月19日给瑞典皇家科学院拒绝接受1988年Crafoord奖的信中如此写道。他同时给 皇家科学院寄去了《收获与播种》的引论卷。皇家科学院决定将这个大约20万美元的奖 项授予他和Pierre Deligne。格洛腾迪克这封信在1988年5月4日Le Monde(《世界报》 )上登出后广为人知。去加入这个接受奖项和荣誉的游戏,格洛腾迪克写道,就意味去 合法化“科学世界的一种精神和一种变化,其在我看来非常的不健康,而且谴责它并希 望它尽快消失,它是如此的自杀性,既在精神上,也在智力上和物质上。”很明显他的 这种情绪和《世界报》许多读者有共鸣。这家报纸一位新闻编辑告诉Jean-Pierre Bou rguignon报纸收到的对格洛腾迪克信的反馈比起它之前别的信都要多,而且大部分反馈 对一位科学家终于站起来承认科学世界已经变得如此腐败表示支持。关于这封信的新闻 出现在其他杂志和报纸上,在数学界它被热烈讨论过。它的一个英语翻译发表在Mathe matical Intelligencer[Intell]上,其中一小部分发表在Notices上[Notices]。 在回绝Crafoord奖的同一年,他以60岁的年纪从蒙彼利尔大学退休。也是在那一年,6 位数学家决定汇集一些文章来作为格洛腾迪克60岁的生日献礼(“Festshrift”)[Fest schrift](K-Theory杂志上也有专门一期献给格洛腾迪克)。这个Festschrift看上去 是和格洛腾迪克和好的一次尝试,而且用来证明他没有如他在《收获与播种》中声称的 那样被“埋葬”。贡献文章的其中一些人是他曾经给予最强烈批评的。当Festschrift 在1990年出版后,作为编者之一的老耶律给格洛腾迪克寄去一本,他的反应特别充满怨 气。在给老耶律的信中,他强烈反对卷首简短的前言和他没有被早点告知这本书会出版 这件事。他说他的工作如同“婚礼上的五彩纸屑”一样被使用,就象那亮亮的不值钱的 辅币抛到空中去获得一种欢乐和庆祝的假象,而下面的不快则被忽视了。格洛腾迪克将 这封信提交给法国数学会Bulletin发表。当法国数学会告诉他Bulletin只发表数学文章 但这封信可以在法国数学会的Gazette上发表后,格洛腾迪克拒绝了。这封信从没有出 版过。 他退休后,格洛腾迪克几乎不在蒙彼利尔大学呆,尽管他继续住在那个地区,一个叫L es Aumettes的村庄。在这个时候,Ladegaillerie说,格洛腾迪克似乎经历了很深的精 神危机,写一些“使得我们对他的身体状况做最坏担忧”的信。在1987年到1988年期间 ,格洛腾迪克写作了《梦或者和好上帝对话的要旨》,其中表示他深信上帝的存在而且 上帝从人的梦中和人说话。里面也包含了关于格洛腾迪克早期生活的大量材料。《梦的 要旨》有大约300页长,并伴随着另外大约500页的笔记。根据Munster大学的Winfred Scharlau在2004年夏天的一次报告,格洛腾迪克将《梦的要旨》包括在他称作《深思》 的一个作品集中,其中也包括构成《回顾》的那些材料,以及一本叫《乱伦的赞美》的 诗集。这本诗集和《梦的要旨》都没有广泛散发。 格洛腾迪克的许多朋友和同事都知道了他对精神方面的日渐沉迷,当他们收到“一封带 来好消息的信”的时候,这封信日期署为1990年1月26日,而他给大约250个人寄了信。 信中宣称:“你是一群为数200到300的人中一员,每个人都亲自接触过我,其被上帝赋 予了一个伟大的使命:宣布并且准备“新时代”(或者解放时代…)的到来,它将在“ 真理之日”,1996年10月14日开始。”他说上帝在1986年首次出现在他面前并和他通过 梦境来联系。他也描述了遇到一位叫作Flora的神,她传授启示但也残酷考验他的忠诚 。尽管信的内容不可理喻,但是它的书写却是完美般的清晰。三个月后格洛腾迪克寄来 一个“更正”,宣称他自己不再确信“一封带来好消息的信”中描述的启示的真实性。 他写道:“我是众多‘精神’(在他们中间我有限的能力无足轻重)中的一个的神秘举 动的受害者,且被他将巨大的力量授予我的身体和心理,这件事情,我不再有最小的怀 疑。”这两封信一起揭示了一种内心被深深打搅和备受煎熬的印象。 1990年7月,格洛腾迪克请求Malgoire包管他所有的数学文章,包括书籍、预印本、通 信以及处于不同准备阶段的手稿。如Malgoire指出,格洛腾迪克想给自己“减轻”很多 东西。他烧了很大一堆材料,大部分是非数学的,其中包括他父母在1930年代的通信。 他给Malgoire看一个200升堆满灰烬的汽油桶,并估计说他大概烧了25000页纸。格洛腾 迪克也将一些文章和别的东西,包括他母亲死时的面部模型,留给一位叫Yolande Lev ine的朋友,在过去十年里他们非常亲密。然后他就消失在比利牛斯山中,在完全的孤 独中生活。一小部分人知道他在哪里,而他也指示他们不要将大学里送达给他的邮件传 给他。Malgoire说即使今天,在格洛腾迪克隐居近15年后,大学里仍然收到大量寄给他 的信。在1995年,格洛腾迪克正式将他数学著作的法律权益赠予Malgoire。 在近15年里格洛腾迪克几乎和数学家没有什么联系。在少数几个见到他的人中包括Lei la Schneps和Pierre Lochak,他们在1990年代中期见过他。他们告诉了他关于他在《 一个纲领的提纲》中勾画的纲领的进展情况,而他很惊讶大家仍然对他的工作感兴趣。 他对物理学发生了强烈兴趣但是对那个领域严格性的缺乏表现失望。Lochak和Schneps 和他交换了数次信并给他邮寄了几本他要求的物理书。在一封信里他问了一个毫无敌意 的简单问题:米是什么?他的信件开始在温暖的友谊和冷淡的怀疑间摇摆,最终他断绝 了和他们的所有联系。尽管和格洛腾迪克的友谊不能维持下去,Lochak和Shneps仍然对 他和他的工作保持着一种炽热的景仰和深切的依恋。他们一起辛苦地将手写的《通过伽 罗瓦理论的长征》的一大部分打成TeX。他们也启动了一个网址,the Grothendieck C ircle,其中包含许多关于格洛腾迪克、他的生平和著作内容丰富的材料[Circle]。 跳舞之星 我告诉你们:一个人心中必有混沌,才能诞生跳舞之星。我告诉你们:你们心中也有混 沌。 弗里德里希-尼采,《查拉斯图拉如是说》 亚历山大-格洛腾迪克的工作在现代数学上有着深远的影响,从更广范围说,它位列于 20世纪人类知识最重要的进展之中。格洛腾迪克的地位可以和,比如说阿尔伯特-爱因 斯坦的来相提并论。他俩中每一个都开启了革命性的新观点而改变了探索的领域,而且 每一人都寻求现象间最根本的、统一的联系。格洛腾迪克研究数学对象如何相对地互相 表现的习性回应着爱因斯坦提倡的相对论观点。格洛腾迪克的工作也和另外一个20世纪 的伟大进展,量子力学有着平行联系,在量子力学中,它颠覆了传统概念,将点粒子用 “概率云”来代替。“这些‘概率云’,其代替了以前可靠的物质粒子,很奇怪的提醒 起我topos居于其上的那个难以描述的‘开邻域’,它好象容易消散的幻影,包围着想 象中的‘点’,”他写道(《收获与播种》,第60页)。 然而,不管格洛腾迪克的成就多么杰出,他将自己的创造力归因于一些很卑微的东西: 一个孩子的天真而热情的好奇心。“发现是这个孩子的特权,”他在《收获与播种》( 第1页)里面写道,“他不会由于老是犯错、看上去象个傻瓜、不认真或者不象别人那 样做事情而去害怕。”对于发现和创造的工作,格洛腾迪克将天资和技术能力放在孩子 希望明了事务的单纯渴望次要的位置上。这个孩子存在于我们每个人身上,尽管它可能 被边缘化、忽视或者淹没了。“我们每个人都可以重新发现发现和创造究竟是什么,而 没有人可以发明它们”(《收获与播种》,第2页)。 这种孩子式的好奇心的一个方面是对于真理的严谨忠诚。格洛腾迪克教给他学生写数学 文章时的一条重要戒律:永远不要说错误的东西。几乎或者本质上正确的陈述是不允许 的。说不清楚可以接受,但在给出确切细节的时候,你就必须只说那些正确的东西。的 确,格洛腾迪克的一生是对真理的不断追寻。从他的数学著作到《收获与播种》以至于 “一封带来好消息的信”,格洛腾迪克都是以如孩子般不可动摇的诚实来写作的。他说 真话——他自己的真话,如他所想的那样。甚至当他犯了实际错误或者被错误假定误导 时,他也坦率说出他脑中所想。他从没有试着去隐瞒他是谁和他在想些什么。 格洛腾迪克对真理的追寻将他带到数学思想的最根源和人类心理感知的最远端。他有过 长长的旅行。“在经历过所有这些的事情后,在比利牛斯山孤独的退休生活里,亚历山 大-格洛腾迪克有权去休息了,”Yves Ladegaillerie 写道[Ladegaillerie],“他值得 我们的景仰和尊敬,但最重要的,想到我们所亏欠他的,我们应该让他得到安宁。” (完) 【 在 abring (原心不原迹@@畏因不畏果) 的大作中提到: 】 : 作者:怪客 : 1.黄教授. : 这些故事都是在一个饭馆里从黄教授那儿听来的. : 黄教授是我几十年的老相识,也是我一直佩服的朋友,他早年从学解析数论起家, : 在国内时就小有名气,到美国后改练算术几何,虽然没做得特别大,也算是成就斐 : 然,毕业后经过一番波折,几年前在此间的一所大学混到了tenure,所以现在是正 : 儿八经的教授.也许是读书时专心过度,黄教授四十多岁了,依然是光棍一条,错过 : 了婚姻大事.好在他生性豪爽豁达,也不以此为意,而且喜爱户外活动,除了打网球, : 一年四季海边钓鱼不说,每到秋冬季节还扛把猎枪到山里打猎,所以每天乐乐呵呵, : >> .................<以下省略>............ -- Home is behind, the world ahead There are many paths to tread Through shadow, to the edge of night until all the stars are alight Mist and shadow, cloud and shade All shall fade, all shall fade |
No comments:
Post a Comment